Pregunta
upstudy study bank question image url

A parallelogram in a coordinate plane is reffected over the line \( y=5 \) and translated 2 units left and 1 unit down. Which statement is true? The resulting parallelogram is congruent to the original parallelogram only if the translation occurs first. The resulting parallelogram is congruent to the original parallelogran only if the reflection occurs first. The resulting parallelogram is not congruent to the original parallelogrann regardless of the order of the transformations. The resulting parallelogram is congruent to the original parallelogram regardless of the order of the transtormations.

Ask by Sherman Frazier. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The resulting parallelogram is congruent to the original regardless of the order of transformations.

Solución

To determine the correct statement regarding the transformations of the parallelogram, we need to analyze the effects of reflection and translation on the shape. 1. **Reflection over the line \( y = 5 \)**: - Reflecting a shape over a line preserves its size and shape. Therefore, the resulting shape after reflection will be congruent to the original shape. 2. **Translation (2 units left and 1 unit down)**: - Translating a shape also preserves its size and shape. Thus, the resulting shape after translation will also be congruent to the original shape. Now, let's consider the order of the transformations: - **If the reflection occurs first**: - The parallelogram is reflected over the line \( y = 5 \), resulting in a new parallelogram that is congruent to the original. - Then, translating this new parallelogram 2 units left and 1 unit down will still result in a shape that is congruent to the original parallelogram. - **If the translation occurs first**: - The parallelogram is translated 2 units left and 1 unit down, resulting in a new parallelogram that is congruent to the original. - Then, reflecting this new parallelogram over the line \( y = 5 \) will also yield a shape that is congruent to the original parallelogram. Since both transformations (reflection and translation) preserve congruence, the resulting parallelogram will be congruent to the original parallelogram regardless of the order in which the transformations are applied. Thus, the correct statement is: **The resulting parallelogram is congruent to the original parallelogram regardless of the order of the transformations.**

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

When dealing with transformations like reflections and translations, it's important to know that these operations preserve congruence regardless of the order in which they are applied. Both reflections and translations are rigid transformations, meaning they don’t change the size or shape of the figure. So, your parallelogram will end up being congruent to its original form no matter if you reflect first or translate first! In fact, this characteristic applies to all rigid motions in the plane. If you take a shape and apply any combination of translations, rotations, and reflections, the final result will always be congruent to the starting figure. So you can confidently state that the resulting parallelogram is congruent to the original parallelogram regardless of the order of the transformations!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad