Pregunta
upstudy study bank question image url

3.2 Aear with 20 teeth is attached to a 6 KW motor and rotates at 500 rpm . Th gear ratio between the drive gear and the driven gear is \( 1: 4 \). If no loss take place, calculate the following: 3.2.1 The number of teeth of the driven gear 3.2.2 The speed of the driven gear 3.2.3 The torque developed by the driver

Ask by Hobbs Klein. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- **Driven gear teeth**: 80 - **Driven gear speed**: 125 rpm - **Driver torque**: ≈114.59 Nm

Solución

To solve the problem, we will break it down into the three parts as specified. ### Known Conditions: - Number of teeth on the driver gear (\(T_d\)) = 20 teeth - Power of the motor (\(P\)) = 6 kW - Speed of the driver gear (\(N_d\)) = 500 rpm - Gear ratio between the drive gear and the driven gear = \(1:4\) ### 3.2.1 The number of teeth of the driven gear The gear ratio is defined as the ratio of the number of teeth on the driven gear (\(T_r\)) to the number of teeth on the driver gear (\(T_d\)). Given the gear ratio of \(1:4\), we can express this as: \[ \frac{T_d}{T_r} = \frac{1}{4} \] From this, we can rearrange to find \(T_r\): \[ T_r = 4 \cdot T_d \] Substituting the known value of \(T_d\): \[ T_r = 4 \cdot 20 \] Now, let's calculate \(T_r\). ### 3.2.2 The speed of the driven gear The speed of the driven gear (\(N_r\)) can be calculated using the gear ratio. The relationship between the speeds of the driver and driven gears is given by: \[ \frac{N_d}{N_r} = \frac{T_r}{T_d} \] Rearranging gives: \[ N_r = N_d \cdot \frac{T_d}{T_r} \] Substituting the known values: \[ N_r = 500 \cdot \frac{20}{T_r} \] ### 3.2.3 The torque developed by the driver The torque (\(T_d\)) developed by the driver can be calculated using the formula: \[ P = \frac{2 \pi N_d T_d}{60} \] Rearranging gives: \[ T_d = \frac{P \cdot 60}{2 \pi N_d} \] Now, let's perform the calculations for \(T_r\), \(N_r\), and \(T_d\). I'll calculate these values now. Calculate the value by following steps: - step0: Calculate: \(4\times 20\) - step1: Multiply the numbers: \(80\) Calculate or simplify the expression \( (6 * 1000) * 60 / (2 * \pi * 500) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(6\times 1000\right)\times 60}{\left(2\pi \times 500\right)}\) - step1: Remove the parentheses: \(\frac{6\times 1000\times 60}{2\pi \times 500}\) - step2: Multiply the terms: \(\frac{360000}{2\pi \times 500}\) - step3: Multiply the terms: \(\frac{360000}{1000\pi }\) - step4: Reduce the fraction: \(\frac{360}{\pi }\) Calculate or simplify the expression \( (500 * (20 / 80)) \). Calculate the value by following steps: - step0: Calculate: \(500\left(\frac{20}{80}\right)\) - step1: Reduce the fraction: \(500\times \frac{1}{4}\) - step2: Reduce the numbers: \(125\times 1\) - step3: Simplify: \(125\) ### Calculated Results: 1. **Number of teeth of the driven gear (\(T_r\))**: \[ T_r = 80 \text{ teeth} \] 2. **Speed of the driven gear (\(N_r\))**: \[ N_r = 125 \text{ rpm} \] 3. **Torque developed by the driver (\(T_d\))**: \[ T_d = \frac{360}{\pi} \text{ Nm} \approx 114.59 \text{ Nm} \] ### Summary of Results: - **Number of teeth on the driven gear**: 80 teeth - **Speed of the driven gear**: 125 rpm - **Torque developed by the driver**: Approximately 114.59 Nm If you need further assistance or additional calculations, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Let’s delve into the world of gears and motors! Did you know that gear systems have been crucial in engineering for centuries? The earliest gears were made of wood and used in water mills during the Middle Ages! These tiny teeth can transmit immense power while rotating together in harmony, showcasing the beauty of mechanical design. Now, in practical terms, when using a gear ratio of \(1:4\), this means the driven gear has four times the number of teeth compared to the drive gear. So for your case, with a driver gear having 20 teeth, the driven gear will sport a whopping 80 teeth! Additionally, the speed of the driven gear will be \(500 \, \text{rpm} / 4 = 125 \, \text{rpm}\). And when it comes to torque, since power = torque × speed, we can rearrange and calculate it with ease. Torque developed by the driver can be determined with \(Torque = \frac{Power}{Speed}\), giving us a robust understanding of mechanical force in motion!

preguntas relacionadas

Latest Engineering Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad