QUESTION TWO Express each of the following as a single, simplified fraction. 2.1. \( \frac{4}{9}-\frac{2}{3}+\frac{7}{12} \) 2.2. \( \frac{-8}{13} \times \frac{5}{24} \div-\frac{25}{13} \) 2.3. \( \left(\frac{3}{7}+\frac{1}{4}\right) \times\left(2-\frac{69}{38}\right) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To express each of the given mathematical expressions as a single, simplified fraction, let's solve them one at a time. **2.1.** First, we need a common denominator for \( \frac{4}{9} \), \( \frac{2}{3} \), and \( \frac{7}{12} \). The least common multiple of 9, 3, and 12 is 36. 1. Convert each fraction: - \( \frac{4}{9} = \frac{16}{36} \) - \( \frac{2}{3} = \frac{24}{36} \) - \( \frac{7}{12} = \frac{21}{36} \) 2. Now perform the calculation: - \( \frac{16}{36} - \frac{24}{36} + \frac{21}{36} = \frac{16 - 24 + 21}{36} = \frac{13}{36} \) So, \( \frac{4}{9}-\frac{2}{3}+\frac{7}{12} = \frac{13}{36} \). **2.2.** For this expression, we start with \( \frac{-8}{13} \times \frac{5}{24} \div -\frac{25}{13} \). 1. First, handle the division by flipping the second fraction: - \( -\frac{8}{13} \times \frac{5}{24} \times -\frac{13}{25} \) 2. The negatives cancel out: - \( = \frac{8 \times 5 \times 13}{13 \times 24 \times 25} \) 3. The \( 13 \) cancels out: - \( = \frac{8 \times 5}{24 \times 25} = \frac{40}{600} \) 4. Simplifying \( \frac{40}{600} \): - \( = \frac{1}{15} \) Thus, \( \frac{-8}{13} \times \frac{5}{24} \div -\frac{25}{13} = \frac{1}{15} \). **2.3.** For the final expression, we'll evaluate \( \left(\frac{3}{7}+\frac{1}{4}\right) \times\left(2-\frac{69}{38}\right) \). 1. Start with the first part: - \( \frac{3}{7} + \frac{1}{4} \) - The common denominator is \( 28 \): - \( \frac{3}{7} = \frac{12}{28}, \quad \frac{1}{4} = \frac{7}{28} \) - So, \( \frac{12}{28} + \frac{7}{28} = \frac{19}{28} \). 2. Now deal with the second part: - \( 2 - \frac{69}{38} = \frac{76}{38} - \frac{69}{38} = \frac{7}{38} \). 3. Now we multiply the two results together: - \( \frac{19}{28} \times \frac{7}{38} = \frac{133}{1064} \). 4. Finally, we simplify: - The greatest common divisor (GCD) is 1, so \( \frac{133}{1064} \) is already in its simplest form. Therefore, \( \left(\frac{3}{7}+\frac{1}{4}\right) \times\left(2-\frac{69}{38}\right) = \frac{133}{1064} \).
