Pregunta
upstudy study bank question image url

Use the present value formula to determine the amount to be invested now, or the present value needed.
The desired accumulated amount is after 12 years invested in an account with interest compounded
monthly.
The amount to be invested now, or the present value needed, is
(Round to the nearest cent as needed.)

Ask by Martinez Evans. in the United States
Mar 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The amount to be invested now is $35,457.31.

Solución

To find the present value (PV) needed to accumulate a desired amount in the future, we can use the present value formula for compound interest:
Where:
  • is the future value (the desired accumulated amount),
  • is the annual interest rate (as a decimal),
  • is the number of times that interest is compounded per year,
  • is the number of years the money is invested.
Given:
  • (monthly compounding)
Now, we can substitute these values into the formula to calculate the present value.
Let’s perform the calculation step by step.
  1. Calculate :
  2. Calculate :
  3. Substitute these values into the present value formula and calculate :
Now, let’s perform these calculations.
Calculate the value by following steps:
  • step0: Calculate:
  • step1: Multiply the numbers:

    Calculate or simplify the expression .
    Calculate the value by following steps:
  • step0: Calculate:
  • step1: Convert the expressions:
  • step2: Multiply by the reciprocal:
  • step3: Multiply the fractions:
  • step4: Multiply:

    Calculate or simplify the expression .
    Calculate the value by following steps:
  • step0: Calculate:
  • step1: Add the numbers:
  • step2: Convert the expressions:
  • step3: Simplify the expression:
  • step4: Rewrite the expression:

    Now that we have the necessary calculations, let’s summarize the steps:
  1. Calculate :
  2. Calculate :
  3. Substitute these values into the present value formula:
  4. Calculate :
Thus, the amount to be invested now, or the present value needed, is approximately .
So, the final answer is:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To calculate the present value needed, you can use the present value formula for compound interest:
Where:
  • = Present Value
  • = Future Value ($80,000)
  • = annual interest rate (0.068)
  • = number of times interest is compounded per year (12)
  • = number of years the money is invested (12)
Plugging in the numbers:
Calculate first:
Now calculate (where ):
Finally, plugging in the values gives:
So, the amount to be invested now, or the present value needed, is approximately .

Additionally, did you know that compounding frequency can significantly impact the final amount? The more often interest is compounded (whether annually, monthly, or daily), the more you’ll earn. In this case, monthly compounding boosts your savings over time compared to just annual compounding.
For those seeking to dive deeper into the 6.8% interest scenario, consider exploring various investment accounts, including stocks and bonds, to see how their rates compare. While savings accounts are “safe,” they often don’t yield as much, so it’s all about balancing risk and reward!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad