Pregunta
upstudy study bank question image url

9) The height above the ground of a cell phone that was accidentally dropped out of a window is described by the equation \( h=-4.9 t^{2}+16 \), where \( h \) is the height in metres and \( t \) is the number of seconds for which the phone is falling. Determine the phone's height above the ground after it has been falling for 1.5 seconds.

Ask by Chandler Clark. in Canada
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 1.5 seconds, the cell phone is 4.975 meters above the ground.

Solución

Substitute \( t=1.5 \) into the equation \( h=-4.9t^{2}+16 \). Evaluate the expression by following steps: - step0: Evaluate: \(h=-4.9t^{2}+16\) - step1: Substitute: \(h=-4.9\times 1.5^{2}+16\) - step2: Convert the expressions: \(h=-4.9\left(\frac{3}{2}\right)^{2}+16\) - step3: Multiply the numbers: \(h=-\frac{441}{40}+16\) - step4: Add the numbers: \(h=\frac{199}{40}\) The height of the cell phone above the ground after it has been falling for 1.5 seconds is \( h = 4.975 \) meters.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine the phone's height above the ground after it has been falling for 1.5 seconds, you can substitute \( t = 1.5 \) into the equation \( h = -4.9 t^{2} + 16 \). Calculating this gives: \[ h = -4.9 \times (1.5)^{2} + 16 \] \[ h = -4.9 \times 2.25 + 16 \] \[ h = -11.025 + 16 \] \[ h = 4.975 \text{ metres} \] So, the phone's height above the ground after it has been falling for 1.5 seconds is approximately 4.975 metres. It’s always fascinating to note that the equations of motion we use today were heavily influenced by the work of Galileo and Newton in the 16th and 17th centuries. They laid the groundwork for understanding the physics of falling objects, paving the way for modern mechanics. So, each time you see something fall, you're witnessing the timeless principles they discovered in action! In a practical sense, understanding how height changes over time due to gravity can be incredibly useful. For instance, engineers use similar calculations when designing safe structures, like buildings or bridges. By knowing the physics of falling objects, they ensure that their projects can withstand unexpected events, such as a falling object during construction or natural disasters!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad