Solve the quadratic equation. \[ x^{2}-x-10=0 \] Write one exact solution in each box. You can add or remove boxes. If there are no real solutions, remove all boxes.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To solve the quadratic equation \( x^{2}-x-10=0 \), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -1 \), and \( c = -10 \). Calculating the discriminant: \[ b^2 - 4ac = (-1)^2 - 4(1)(-10) = 1 + 40 = 41 \] Now we plug the values into the quadratic formula: \[ x = \frac{-(-1) \pm \sqrt{41}}{2(1)} = \frac{1 \pm \sqrt{41}}{2} \] So the solutions are: \[ x_1 = \frac{1 + \sqrt{41}}{2} \] \[ x_2 = \frac{1 - \sqrt{41}}{2} \] Here are the exact solutions: **Box 1:** \( \frac{1 + \sqrt{41}}{2} \) **Box 2:** \( \frac{1 - \sqrt{41}}{2} \)
