Pregunta
upstudy study bank question image url

2. On what sum of money will the difference between the compound interest and simple interest for 3 years be equal to \( ₹ 930 \), if the rate of interest charged for both is \( 10 \% \) p.a.?

Ask by Chang Mcdonald. in India
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The sum of money is ₹30,000.

Solución

Let the principal be P. Step 1. Calculate the simple interest (SI) for 3 years:   SI = P × (rate) × (time) = P × 0.10 × 3 = 0.30P Step 2. Calculate the compound interest (CI) for 3 years:   The amount after 3 years is A = P × (1 + 0.10)³ = P × (1.1)³   Since (1.1)³ = 1.331,   CI = A - P = P × 1.331 − P = 0.331P Step 3. Find the difference between CI and SI:   Difference = CI – SI = 0.331P − 0.30P = 0.031P Step 4. Set the difference equal to ₹930 and solve for P:   0.031P = 930   P = 930 / 0.031   P = 30,000 Thus, the sum of money is ₹30,000.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the sum of money (principal) where the difference between compound interest and simple interest over 3 years is ₹ 930 at a rate of 10% per annum, we can use the formula: Difference = Compound Interest - Simple Interest = \( P \times \left( \left(1 + \frac{r}{100}\right)^n - 1 - \frac{rn}{100} \right) \). Here, \( r = 10 \), \( n = 3 \), and the difference is ₹ 930. Plugging in the values, we get: \[ 930 = P \left( \left(1 + \frac{10}{100}\right)^3 - 1 - \frac{10 \times 3}{100} \right) \]. Calculating the terms gives us \( 930 = P \left( 1.331 - 1 - 0.3 \right) \) and simplifying leads to \( 930 = P \times 0.031 \), which gives us \( P = \frac{930}{0.031} \approx ₹ 30000 \). So, the principal amount on which the interest difference occurs is approximately ₹ 30000. To make the topic even more fun, did you know that the concept of compound interest is often referred to as "interest on interest"? It's like a financial snowball effect where your money gathers momentum and grows faster the longer it's left to compound. This principle is why many people encourage early investing—the sooner you start, the more pronounced the compounding effect! Also, if you're curious about how these calculations came to be, many past scholars, including the great mathematician Leonardo da Vinci, recognized the power of compounded growth. Nowadays, there are not only traditional ways to calculate this but also numerous online calculators that provide instant results, reflecting how technology has made financial math more accessible!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad