Find the quotient and write your answer in mixed number form. Reduce if possible. \[ \left(-4 \frac{3}{5}\right) \div\left(-1 \frac{1}{3}\right) \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
First, let's convert the mixed numbers to improper fractions. For \(-4 \frac{3}{5}\): \[ -4 \frac{3}{5} = -\left(4 \times 5 + 3\right) / 5 = -\left(20 + 3\right) / 5 = -23 / 5 \] For \(-1 \frac{1}{3}\): \[ -1 \frac{1}{3} = -\left(1 \times 3 + 1\right) / 3 = -\left(3 + 1\right) / 3 = -4 / 3 \] Now, we can divide these two improper fractions: \[ \left(-\frac{23}{5}\right) \div \left(-\frac{4}{3}\right) = -\frac{23}{5} \times -\frac{3}{4} = \frac{23 \times 3}{5 \times 4} = \frac{69}{20} \] Next, we convert \(\frac{69}{20}\) into mixed number form. Dividing 69 by 20 gives: \[ 69 \div 20 = 3 \quad \text{R} 9 \] So, \(\frac{69}{20} = 3 \frac{9}{20}\). The final answer, in mixed number form and reduced where possible, is: \[ 3 \frac{9}{20} \]