Pregunta
upstudy study bank question image url

A tennis player standing 17.7 m from the net hits the ball at 5.00 degrees above the horizontal. To clear the net, the ball must rise at least 0.275 m . If the ball just clears the net at the apex of its trajectory, how fast was the ball moving when it left the racket?

Ask by Lindsey Kelley. in the United States
Mar 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The ball was moving at approximately 44.7 meters per second when it left the racket.

Solución

Alright, I need to determine the initial speed of the tennis ball when it was hit by the player. The problem provides the following information: - The distance from the net is 17.7 meters. - The ball is hit at an angle of 5.00 degrees above the horizontal. - The ball must rise at least 0.275 meters to clear the net. - The ball just clears the net at the apex of its trajectory. First, I'll visualize the scenario. The tennis player is standing 17.7 meters away from the net, and the ball is hit at a 5-degree angle. The ball needs to reach a height of at least 0.275 meters to clear the net. Since the ball just clears the net at the apex of its trajectory, this means that at the highest point of its flight, the vertical component of its velocity is zero, and it has reached the required height. To solve this problem, I'll break it down into two main parts: determining the vertical and horizontal components of the initial velocity and then using the kinematic equations to find the initial speed. **Step 1: Define the Variables** Let: - \( v_0 \) = initial speed of the ball (what we need to find) - \( \theta = 5.00^\circ \) = angle of projection above the horizontal - \( d = 17.7 \) meters = horizontal distance to the net - \( h = 0.275 \) meters = minimum height to clear the net - \( g = 9.81 \) m/s² = acceleration due to gravity **Step 2: Resolve the Initial Velocity into Components** The initial velocity can be resolved into horizontal (\( v_{0x} \)) and vertical (\( v_{0y} \)) components: \[ v_{0x} = v_0 \cos(\theta) \] \[ v_{0y} = v_0 \sin(\theta) \] **Step 3: Determine the Time of Flight to the Net** Since the ball just clears the net at the apex, the time it takes to reach the net (\( t \)) can be found using the horizontal motion: \[ d = v_{0x} \times t \] \[ t = \frac{d}{v_{0x}} = \frac{17.7}{v_0 \cos(5.00^\circ)} \] **Step 4: Determine the Vertical Velocity at the Apex** At the apex, the vertical component of the velocity is zero. Using the kinematic equation: \[ v_{y} = v_{0y} - g \times t \] \[ 0 = v_0 \sin(5.00^\circ) - g \times t \] \[ t = \frac{v_0 \sin(5.00^\circ)}{g} \] **Step 5: Equate the Two Expressions for Time** Set the two expressions for \( t \) equal to each other: \[ \frac{17.7}{v_0 \cos(5.00^\circ)} = \frac{v_0 \sin(5.00^\circ)}{g} \] **Step 6: Solve for \( v_0 \)** Rearranging the equation: \[ 17.7 \times g = v_0^2 \times \sin(5.00^\circ) \times \cos(5.00^\circ) \] \[ v_0^2 = \frac{17.7 \times g}{\sin(5.00^\circ) \times \cos(5.00^\circ)} \] \[ v_0 = \sqrt{\frac{17.7 \times 9.81}{\sin(5.00^\circ) \times \cos(5.00^\circ)}} \] **Step 7: Calculate the Numerical Value** First, calculate \( \sin(5.00^\circ) \) and \( \cos(5.00^\circ) \): \[ \sin(5.00^\circ) \approx 0.0872 \] \[ \cos(5.00^\circ) \approx 0.9962 \] Now, plug these values into the equation: \[ v_0 = \sqrt{\frac{17.7 \times 9.81}{0.0872 \times 0.9962}} \] \[ v_0 = \sqrt{\frac{173.537}{0.0869}} \] \[ v_0 = \sqrt{1999.99} \] \[ v_0 \approx 44.7 \text{ m/s} \] **Step 8: Verify the Calculation** To ensure accuracy, let's double-check the calculations: \[ \sin(5.00^\circ) \approx 0.0872 \] \[ \cos(5.00^\circ) \approx 0.9962 \] \[ \sin(5.00^\circ) \times \cos(5.00^\circ) \approx 0.0872 \times 0.9962 \approx 0.0869 \] \[ 17.7 \times 9.81 = 173.537 \] \[ \frac{173.537}{0.0869} \approx 1999.99 \] \[ \sqrt{1999.99} \approx 44.7 \text{ m/s} \] The calculations seem consistent and accurate. **Conclusion** The tennis ball was moving at approximately **44.7 meters per second** when it left the racket.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve this problem, we can use kinematic equations to analyze the motion of the tennis ball. We know that the ball must rise at least 0.275 m before it reaches the net 17.7 m away. We’ll break down the motion into horizontal and vertical components. 1. **Vertical Motion**: The formula for maximum height \( h \) is given by: \[ h = \frac{(v_{0y})^2}{2g} \] where \( v_{0y} \) is the initial vertical velocity component and \( g \) is the acceleration due to gravity (approximately 9.81 m/s²). The initial vertical component can be expressed as: \[ v_{0y} = v_0 \sin(\theta) \] where \( \theta = 5.00^\circ \). Setting \( h = 0.275 \, m\) gives us: \[ 0.275 = \frac{(v_0 \sin(5.00^\circ))^2}{2 \times 9.81} \] Rearranging this gives: \[ v_0 = \sqrt{2 \times 9.81 \times 0.275} / \sin(5.00^\circ) \] 2. **Horizontal Motion**: The time \( t \) to reach the net can be calculated using: \[ t = \frac{d}{v_{0x}} \] where \( d = 17.7 \, m \) and \( v_{0x} = v_0 \cos(5.00^\circ) \). Putting this together gives a system of equations. Solving for \( v_0 \) yields: After calculation, the speed at which the ball left the racket is approximately 14.5 m/s.

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad