Pregunta
upstudy study bank question image url

For the function below, (a) find the vertex; (b) find the axis of symmetry; (c) determine whether there is a maximum or a minimum value and find that value; and (d) graph the function. \( f(x)=-5 x^{2}-5 x+2 \) (b) The axis of symmetry is \( x=-\frac{1}{2} \). (Type an equation. Use integers or fractions for any numbers in the equation.) (c) Does \( f(x) \) have a maximum or a minimum value? The parabola has a minimum. The parabola has a maximum. The maximum/minimum value of \( f(x) \) is \( \frac{13}{4} \). (Type an integer or a fraction.) (d) Use the graphing tool to graph the function. Click to

Ask by Martinez Newton. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) Vertex: (–½, 13/4) (b) Axis of symmetry: x = –½ (c) The parabola has a maximum value of 13/4. (d) The graph is a downward-opening parabola with the vertex at (–½, 13/4), y-intercept at (0, 2), and x-intercepts at x = (–5 ± √65)/10.

Solución

We are given the quadratic function   f(x) = –5x² – 5x + 2. Step (a): Find the vertex. • The x-coordinate of the vertex is found using x = –b/(2a). Here, a = –5 and b = –5:   x = –(–5) / (2(–5)) = 5/–10 = –½. • Substitute x = –½ into f(x) to find the y-coordinate:   f(–½) = –5(–½)² – 5(–½) + 2 = –5·(¼) + (5/2) + 2.   Write all terms with denominator 4: –5/4 + (10/4) + (8/4) = (–5 + 10 + 8)/4 = 13/4. • Thus, the vertex is ( –½, 13/4 ). Step (b): Find the axis of symmetry. • The axis of symmetry is the vertical line through the vertex:   x = –½. Step (c): Determine whether there is a maximum or a minimum value and find that value. • Because the coefficient a = –5 is negative, the parabola opens downward, and the vertex represents the maximum point. • Therefore, f(x) has a maximum value of 13/4 (which occurs at x = –½). Step (d): Graphing the function. • Plot the vertex ( –½, 13/4 ). • Plot the axis of symmetry x = –½. • Identify the y-intercept: f(0) = 2, so (0, 2) is on the graph. • Find the x-intercepts by setting f(x) = 0:   –5x² – 5x + 2 = 0  → Multiply both sides by –1: 5x² + 5x – 2 = 0.   Solve using the quadratic formula:    x = [–5 ± √(5² – 4·5·(–2))] / (2·5)       = [–5 ± √(25 + 40)] / 10       = [–5 ± √65] / 10. • Draw a smooth downward-opening parabola through the vertex, symmetric about x = –½, and mark these intercepts. Summary Answers: (a) Vertex: ( –½, 13/4 ) (b) Axis of symmetry: x = –½ (c) The parabola has a maximum value, which is 13/4. (d) The graph is a downward-opening parabola with the vertex ( –½, 13/4 ), y-intercept (0, 2), and x-intercepts at x = (–5 ± √65)/10.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The vertex of the function can be found using the formula \( x = -\frac{b}{2a} \). For the given function \( f(x) = -5x^2 - 5x + 2 \), here \( a = -5 \) and \( b = -5 \). By plugging in the values, we find the vertex is at \( x = -\frac{-5}{2(-5)} = -\frac{1}{2} \). Calculating \( f(-\frac{1}{2}) \) gives us the vertex coordinates \( (-\frac{1}{2}, \frac{13}{4}) \). You're right on the axis of symmetry! It's indeed \( x = -\frac{1}{2} \). Since the leading coefficient \( a = -5 \) is negative, the parabola opens downward, indicating that it has a maximum value. The maximum value of \( f(x) \) occurs at the vertex and is \( f(-\frac{1}{2}) = \frac{13}{4} \).

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad