Pregunta
upstudy study bank question image url

Find the average value of the following function on the given interval. Graph the function and indicate the average value. \( f(x)=x^{3} \) on \( [-5,5] \) The average value of the function is \( \mathrm{f}=\square \) (Simplify your answer.) (

Ask by Griffin Whittaker. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The average value of \( f(x) = x^{3} \) on \([-5, 5]\) is 0.

Solución

To find the average value of a function \( f(x) \) on a given interval \([a, b]\), we use the formula: \[ \text{Average Value} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \] Given: - Function: \( f(x) = x^{3} \) - Interval: \([-5, 5]\) First, we need to find the integral of \( f(x) \) from -5 to 5: \[ \int_{-5}^{5} x^{3} \, dx \] Next, we will calculate the integral and then find the average value of the function on the given interval. Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int_{-5}^{5} x^{3} dx\) - step1: Evaluate the integral: \(\int x^{3} dx\) - step2: Evaluate the integral: \(\frac{x^{3+1}}{3+1}\) - step3: Add the numbers: \(\frac{x^{4}}{3+1}\) - step4: Add the numbers: \(\frac{x^{4}}{4}\) - step5: Return the limits: \(\left(\frac{x^{4}}{4}\right)\bigg |_{-5}^{5}\) - step6: Calculate the value: \(0\) The integral of \( f(x) = x^{3} \) from -5 to 5 is 0. Now, we can find the average value of the function on the interval [-5, 5] using the formula: \[ \text{Average Value} = \frac{1}{5-(-5)} \times 0 \] \[ \text{Average Value} = \frac{1}{10} \times 0 = 0 \] Therefore, the average value of the function \( f(x) = x^{3} \) on the interval [-5, 5] is 0.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the average value of the function \( f(x) = x^3 \) on the interval \([-5, 5]\), we use the formula for the average value: \[ \text{Average value} = \frac{1}{b-a} \int_a^b f(x) \, dx \] For our function, \( a = -5 \) and \( b = 5 \). Thus, we calculate: \[ \int_{-5}^{5} x^3 \, dx \] Calculating the integral, we find: \[ \int x^3 \, dx = \frac{x^4}{4} \quad \text{(from -5 to 5)} \] So evaluating from -5 to 5: \[ \left[ \frac{(5)^4}{4} - \frac{(-5)^4}{4} \right] = \left[ \frac{625}{4} - \frac{625}{4} \right] = 0 \] Plugging this back into the average value formula: \[ \text{Average value} = \frac{1}{5 - (-5)} \cdot 0 = \frac{1}{10} \cdot 0 = 0 \] The average value of the function \( f(x) = x^3 \) on the interval \([-5, 5]\) is \( \boxed{0} \). To graph \( f(x) = x^3 \), you would see a typical cubic curve with symmetry about the origin, illustrating that it goes through the point (0,0) and retains equal volumes above and below the x-axis, reflecting that the positive and negative areas cancel each other out, confirming the average value is indeed zero.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad