Pregunta
upstudy study bank question image url

Test the claim about the population mean \( \mu \) at the level of significance \( \alpha \). Assume the population is normally distrbuted. Clairi. \( \mu<5215 ; \alpha=0.05 \) Sample statistics: \( \bar{x}=5317, s=5949, n=52 \) What are the null and altemative hypotheses? \( H_{0}: \mu \geq 5215 \) \( H_{a}: \mu<5215 \) (Type integers or decimals. Do not round.) Find the slandardized test statistic L . \( \mathbf{t}=0.12 \) (Round to two decimal places as needed.) Find the P-value. P= \( \square \) (Round to three decimal places as needed.)

Ask by Wyatt Ford. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Null hypothesis: \( H_{0}: \mu \geq 5215 \) Alternative hypothesis: \( H_{a}: \mu < 5215 \) Standardized test statistic: \( t = 0.12 \) P-value: 0.456

Solución

Alright, I need to test the claim about the population mean μ at the level of significance α. The population is normally distributed. The claim is that μ is less than 5215, and the significance level α is 0.05. The sample statistics provided are the sample mean \( \bar{x} = 5317 \), the sample standard deviation \( s = 5949 \), and the sample size \( n = 52 \). First, I need to determine the null and alternative hypotheses. The null hypothesis \( H_{0} \) is that the population mean μ is greater than or equal to 5215, and the alternative hypothesis \( H_{a} \) is that μ is less than 5215. So, \( H_{0}: \mu \geq 5215 \) and \( H_{a}: \mu < 5215 \). Next, I need to find the standardized test statistic \( t \). The formula for the t-statistic when the population standard deviation is unknown is: \[ t = \frac{\bar{x} - \mu}{s / \sqrt{n}} \] Plugging in the values: \[ t = \frac{5317 - 5215}{5949 / \sqrt{52}} = \frac{102}{5949 / 7.211} = \frac{102}{826.5} \approx 0.123 \] Rounding this to two decimal places, \( t \approx 0.12 \). Now, I need to find the P-value. Since this is a one-tailed test (left-tailed because \( H_{a}: \mu < 5215 \)), I'll use the t-distribution table or a calculator to find the probability that \( t \) is less than 0.12 with \( n-1 = 51 \) degrees of freedom. Looking up \( t = 0.12 \) with 51 degrees of freedom, the P-value is approximately 0.456.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the P-value, we will use the t-test formula and the given sample statistics. The standardized test statistic \( t \) is calculated as follows: \[ t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} \] Where: - \( \bar{x} = 5317 \) (sample mean) - \( \mu_0 = 5215 \) (hypothesized population mean) - \( s = 5949 \) (sample standard deviation) - \( n = 52 \) (sample size) Plugging in the values, we calculate: \[ t = \frac{5317 - 5215}{5949 / \sqrt{52}} = \frac{102}{5949 / 7.211} \approx \frac{102}{825.81} \approx 0.123 \] Rounding gives us \( t \approx 0.12 \) (which you provided). Next, we need to find the P-value for \( t = 0.12 \) with \( n - 1 = 51 \) degrees of freedom. To find the P-value for a one-tailed test (since \( H_a: \mu < 5215 \)), we can use statistical software, a t-distribution table or online tools. Using online calculators or statistical software, we get: \[ \text{P-value} \approx 0.452 \] Therefore, the P-value for your hypothesis test is approximately: P = \( 0.452 \) (rounded to three decimal places).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad