Pregunta
upstudy study bank question image url

Consider the polynomial function \( p(x)=-9 x^{9}+6 x^{6}-3 x^{3}+1 \) What is the end behavior of the graph of \( p \) ? Choose 1 answer: (A) As \( x \rightarrow \infty, p(x) \rightarrow \infty \), and as \( x \rightarrow-\infty, p(x) \rightarrow \infty \) (B) As \( x \rightarrow \infty, p(x) \rightarrow-\infty \), and as \( x \rightarrow-\infty, p(x) \rightarrow \infty \) (C) As \( x \rightarrow \infty, p(x) \rightarrow-\infty \), and as \( x \rightarrow-\infty, p(x) \rightarrow-\infty \) (D) As \( x \rightarrow \infty, p(x) \rightarrow \infty \), and as \( x \rightarrow-\infty, p(x) \rightarrow-\infty \)

Ask by Gross Murphy. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

As \( x \) approaches infinity, \( p(x) \) approaches negative infinity, and as \( x \) approaches negative infinity, \( p(x) \) approaches positive infinity.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To determine the end behavior of the polynomial function \( p(x)=-9 x^{9}+6 x^{6}-3 x^{3}+1 \), we focus on the leading term, which is \( -9x^9 \). Since it has an odd degree (9) and a negative coefficient (-9), the end behavior can be predicted. As \( x \to \infty \), \( -9x^9 \to -\infty \), and as \( x \to -\infty \), \( -9x^9 \to \infty \). Thus, the correct answer is (B) As \( x \rightarrow \infty, p(x) \rightarrow-\infty \), and as \( x \rightarrow-\infty, p(x) \rightarrow \infty \). From a historical perspective, polynomial functions have been studied for centuries, dating back to ancient civilizations like the Babylonians. They recognized the importance of algebraic expressions for solving various practical problems, paving the way for more complex functions and analysis, leading to the rich mathematical landscape we enjoy today! In real-world applications, understanding the end behavior of polynomials is crucial in fields like physics and engineering. For instance, knowing how a polynomial might behave at extreme values can help engineers design systems that properly respond to variables, such as stress in materials or forces in structures, ensuring safety and effectiveness. So next time you work with polynomials, think of them not just as equations, but as tools shaping the world around us!

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad