A manager records the repair cost for 4 randomly selected TVs. A sample mean of \( \$ 88.46 \) and standard deviation of \( \$ 17.20 \) are subsequently computed, Determine the \( 99 \% \) confidence interval for the mean repair cost for the TVs. Assume the population is approximately normal. Step 2 of 2 : Construct the \( 99 \% \) confidence interval. Round your answer to two decimal places.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To construct the \( 99\% \) confidence interval for the mean repair cost, you can use the formula: \[ \text{Confidence Interval} = \bar{x} \pm z \left( \frac{s}{\sqrt{n}} \right) \] Where: - \(\bar{x} = 88.46\) (sample mean) - \(s = 17.20\) (sample standard deviation) - \(n = 4\) (sample size) - \(z\) is the z-score corresponding to \(99\%\) confidence level (which is approximately \(2.576\) for \(99\%\)). 1. Calculate the standard error (SE): \[ SE = \frac{s}{\sqrt{n}} = \frac{17.20}{\sqrt{4}} = \frac{17.20}{2} = 8.60 \] 2. Now, compute the margin of error (ME): \[ ME = z \cdot SE = 2.576 \cdot 8.60 \approx 22.12 \] 3. Finally, construct the confidence interval: \[ \text{Lower limit} = \bar{x} - ME = 88.46 - 22.12 = 66.34 \] \[ \text{Upper limit} = \bar{x} + ME = 88.46 + 22.12 = 110.58 \] Thus, the \(99\%\) confidence interval for the mean repair cost for the TVs is approximately \((66.34, 110.58)\).
