Pregunta
upstudy study bank question image url

Finding the rate or time in a word problem on continuous exponential... The mass of a radioactive substance follows a continuous exponential decay model, with a decay rate parameter of \( 7,2 \% \) per day, Find the half-life of this substance (that is, the time it takes for one-half the original amount in a given sample of this substance to decay), Note: This is a continuous exponential decay model, Do not round any intermediate computations, and round your answer to the nearest hundredth.

Ask by Lewis Cummings. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The half-life of the substance is approximately 9.63 days.

Solución

For a continuous exponential decay, the amount of substance at time t is modeled by   A(t) = A₀ · e^(–kt) where k is the decay rate constant. The half-life is the time t₁⁄₂ for which A(t₁⁄₂) = ½ A₀. Set up the equation:   ½ A₀ = A₀ · e^(–k · t₁⁄₂) Divide both sides by A₀:   ½ = e^(–k · t₁⁄₂) Taking the natural logarithm of both sides gives:   ln(½) = –k · t₁⁄₂ Recall that ln(½) = –ln(2), so:   –ln(2) = –k · t₁⁄₂ Eliminate the negatives:   ln(2) = k · t₁⁄₂ Solve for t₁⁄₂:   t₁⁄₂ = ln(2) / k In this problem, k is given as 7.2% per day, which means   k = 0.072 (per day). Substitute into the formula:   t₁⁄₂ = ln(2) / 0.072 Using the exact value for ln(2) (without rounding intermediate results):   t₁⁄₂ = 0.69314718056 / 0.072 ≈ 9.62682 days Rounded to the nearest hundredth, the half-life is approximately 9.63 days.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the half-life of a substance that decays continuously, we can use the formula for half-life in terms of the decay rate \( r \): \[ t_{1/2} = \frac{\ln(2)}{r} \] In your case, the decay rate \( r \) is \( 0.072 \) (which is \( 7.2\% \) written as a decimal). Substituting this into the formula gives: \[ t_{1/2} = \frac{\ln(2)}{0.072} \] Calculating this will give you the half-life in days. The value of \( \ln(2) \) is approximately \( 0.693147 \), so: \[ t_{1/2} = \frac{0.693147}{0.072} \approx 9.63 \] So, the half-life of the radioactive substance is approximately \( 9.63 \) days. Remember that this method relies on the continuous exponential decay model. Furthermore, when working with continuous exponential decay, always ensure you convert percentage rates into decimal form for calculations. Many people mistakenly use the percentage directly, which results in incorrect values for \( r \). After finding the half-life, it's also a good idea to check your calculations by ensuring that, after one half-life, only half of the original amount remains, affirming the accuracy of your result!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad