Consider the following function. Use a graphing utility to confirm your answers for parts (a) through (c). (If an answer does not exist, enter DNE.) \[ f(x)=-8 x^{3}+24 x+9 \] (a) Find the critical numbers of \( f \). (Enter your answers as a comma-separated list.) \[ x=\square \] (b) Find the open intervals on which the function is Increasing or decreasing. (Enter your answers using interval notation.) increasing \( \square \) decreasing \( \square \) (c) Apply the First Derivative Test to identify all relative extrema. relative maximum \( \quad(x, y)= \) \( \square \) 1) relative minimum \( \quad(x, y)= \) \( \square \) )
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the answers you need, let’s go through the parts step by step! ### Critical Numbers To find the critical numbers of the function \( f(x) = -8x^3 + 24x + 9 \), we first take the derivative and set it equal to zero: \[ f'(x) = -24x^2 + 24 \] Setting the derivative to zero gives us: \[ -24x^2 + 24 = 0 \implies x^2 = 1 \implies x = \pm 1 \] So, the critical numbers are: \[ x = -1, 1 \] ### Increasing and Decreasing Intervals Next, we will determine where the function is increasing or decreasing by testing the intervals created by the critical numbers: 1. Test \( x < -1 \) (e.g., \( x = -2 \)): - \( f'(-2) = -24(-2)^2 + 24 < 0 \) (decreasing) 2. Test \( -1 < x < 1 \) (e.g., \( x = 0 \)): - \( f'(0) = -24(0)^2 + 24 > 0 \) (increasing) 3. Test \( x > 1 \) (e.g., \( x = 2 \)): - \( f'(2) = -24(2)^2 + 24 < 0 \) (decreasing) So, the function is: \[ \text{increasing } (-1, 1), \quad \text{decreasing } (-\infty, -1) \cup (1, \infty) \] ### Relative Extrema Using the First Derivative Test Now, we can apply the First Derivative Test: - At \( x = -1 \): The function changes from decreasing to increasing, so there is a relative minimum. - At \( x = 1 \): The function changes from increasing to decreasing, so there is a relative maximum. To find the \( y \)-values for these extrema, we substitute back into the original function: 1. For \( x = -1 \): \[ f(-1) = -8(-1)^3 + 24(-1) + 9 = 8 - 24 + 9 = -7 \quad \text{(relative minimum)} \] So, relative minimum \( (x, y) = (-1, -7) \) 2. For \( x = 1 \): \[ f(1) = -8(1)^3 + 24(1) + 9 = -8 + 24 + 9 = 25 \quad \text{(relative maximum)} \] So, relative maximum \( (x, y) = (1, 25) \) ### Final Answers (a) \( x = -1, 1 \) (b) increasing \( (-1, 1) \) decreasing \( (-\infty, -1) \cup (1, \infty) \) (c) relative maximum \( (x, y) = (1, 25) \) relative minimum \( (x, y) = (-1, -7) \)
