Pregunta
upstudy study bank question image url

\( m^{2}+14 m-5=0 \) The solution set 1 s

Ask by Byrd Salazar. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are \( m = -7 - 3\sqrt{6} \) and \( m = -7 + 3\sqrt{6} \).

Solución

To solve the quadratic equation m² + 14m - 5 = 0, we can use the quadratic formula:   m = [ -b ± √(b² - 4ac) ] / (2a) Here, a = 1, b = 14, and c = -5. Plugging in these values:   m = [ -14 ± √(14² - 4 × 1 × (-5)) ] / (2 × 1)   m = [ -14 ± √(196 + 20) ] / 2   m = [ -14 ± √216 ] / 2 Since √216 can be simplified:   √216 = √(36 × 6) = 6√6 Thus, the equation becomes:   m = [ -14 ± 6√6 ] / 2 We can simplify further by dividing both terms in the numerator by 2:   m = -7 ± 3√6 The solution set is { -7 - 3√6, -7 + 3√6 }.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the quadratic equation \( m^2 + 14m - 5 = 0 \), we can use the quadratic formula: \[ m = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \] Here, \( a = 1 \), \( b = 14 \), and \( c = -5 \). Plugging in these values, we get: \[ m = \frac{{-14 \pm \sqrt{{14^2 - 4(1)(-5)}}}}{2(1)} \] Calculating the discriminant: \[ 14^2 - 4(1)(-5) = 196 + 20 = 216 \] Now putting it all together: \[ m = \frac{{-14 \pm \sqrt{216}}}{2} \] Simplifying \( \sqrt{216} = 6\sqrt{6} \), we have: \[ m = \frac{{-14 \pm 6\sqrt{6}}}{2} = -7 \pm 3\sqrt{6} \] Thus, the solution set is: \[ m = -7 + 3\sqrt{6}, \quad m = -7 - 3\sqrt{6} \] By the way, did you know that quadratic equations have been around since ancient civilizations? The Babylonians were using methods to solve these types of equations over 3,000 years ago! They didn't use algebraic notation, but they had their own effective techniques. On the other hand, a common mistake when solving quadratics using the formula is forgetting to calculate the discriminant accurately. Always double-check your arithmetic under the square root! This can save you from falling into the trap of erroneous solutions.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad