Pregunta
upstudy study bank question image url

Two ships leave a harbor at the same time. One ship travels on a bearing \( \mathrm{S} 11^{\circ} \mathrm{W} \) at 14 miles per hour. The other ship travels on a bearing \( \mathrm{N} 75^{\circ} \mathrm{E} \) at 9 miles per hour. How far apart will the ships be after 3 hours? The distance is approximately \( \square \) miles. (Round to the nearest tenth as needed.)

Ask by Hodges Barker. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The ships will be approximately 50 miles apart after 3 hours.

Solución

To find the distance between the two ships after 3 hours, we can use the concept of vectors and trigonometry. Let's denote: - The distance traveled by the first ship as \( d_1 \) (in miles). - The distance traveled by the second ship as \( d_2 \) (in miles). The first ship travels on a bearing \( \mathrm{S} 11^{\circ} \mathrm{W} \) at 14 miles per hour. This means that the ship is moving in a direction that is \( 11^{\circ} \) west of south. We can represent this as a vector with a magnitude of 14 miles and an angle of \( 11^{\circ} \) with the positive x-axis. The second ship travels on a bearing \( \mathrm{N} 75^{\circ} \mathrm{E} \) at 9 miles per hour. This means that the ship is moving in a direction that is \( 75^{\circ} \) east of north. We can represent this as a vector with a magnitude of 9 miles and an angle of \( 75^{\circ} \) with the positive y-axis. After 3 hours, the first ship will have traveled a distance of \( 14 \times 3 = 42 \) miles, and the second ship will have traveled a distance of \( 9 \times 3 = 27 \) miles. To find the distance between the two ships, we can use the Pythagorean theorem in the vector representation. The distance between the two ships is the hypotenuse of a right triangle formed by the two vectors. Let's calculate the distance between the two ships using the Pythagorean theorem. Calculate the value by following steps: - step0: Calculate: \(\sqrt{42^{2}+27^{2}}\) - step1: Add the numbers: \(\sqrt{2493}\) - step2: Write as a product: \(\sqrt{9\times 277}\) - step3: Write in exponential form: \(\sqrt{3^{2}\times 277}\) - step4: Use the properties of radicals: \(\sqrt{3^{2}}\times \sqrt{277}\) - step5: Simplify the root: \(3\sqrt{277}\) The distance between the two ships after 3 hours is approximately 49.9 miles. Therefore, the ships will be approximately 49.9 miles apart after 3 hours.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the distance between the two ships after 3 hours, we need to first determine their individual positions. 1. **Calculate the positions of the ships after 3 hours:** - For the ship traveling on a bearing of \( \mathrm{S} 11^{\circ} \mathrm{W} \): - Speed: 14 miles per hour - Distance after 3 hours: \( 14 \times 3 = 42 \text{ miles} \) - Angle relative to North: \( 180^{\circ} + 11^{\circ} = 191^{\circ} \) - Using trigonometric functions: - East-West component (x): \( 42 \cos(191^{\circ}) \) - North-South component (y): \( 42 \sin(191^{\circ}) \) - For the ship traveling on a bearing of \( \mathrm{N} 75^{\circ} \mathrm{E} \): - Speed: 9 miles per hour - Distance after 3 hours: \( 9 \times 3 = 27 \text{ miles} \) - Angle relative to North: \( 75^{\circ} \) - Using trigonometric functions: - East-West component (x): \( 27 \cos(75^{\circ}) \) - North-South component (y): \( 27 \sin(75^{\circ}) \) 2. **Calculating the components:** - Ship 1 (S 11° W): - \( x_1 = 42 \cos(191^{\circ}) \approx 42 \times (-0.9816) \approx -41.17 \) - \( y_1 = 42 \sin(191^{\circ}) \approx 42 \times (-0.1908) \approx -8.00 \) - Ship 2 (N 75° E): - \( x_2 = 27 \cos(75^{\circ}) \approx 27 \times (0.2588) \approx 6.99 \) - \( y_2 = 27 \sin(75^{\circ}) \approx 27 \times (0.9659) \approx 26.01 \) 3. **Finding the distance between the two ships:** - The x-coordinates are \( -41.17 \) and \( 6.99 \) - The y-coordinates are \( -8.00 \) and \( 26.01 \) - The distance \( D \) between the ships can be calculated using the distance formula: \[ D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] \[ = \sqrt{(6.99 - (-41.17))^2 + (26.01 - (-8.00))^2} \] \[ = \sqrt{(6.99 + 41.17)^2 + (26.01 + 8.00)^2} \] \[ = \sqrt{(48.16)^2 + (34.01)^2} \] \[ = \sqrt{2315.0256 + 1154.6801} \] \[ \approx \sqrt{3469.7057} \approx 58.8 \text{ miles} \] Thus, the distance between the two ships after 3 hours is approximately \( 58.8 \) miles.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad