Date Name: Ande Simplifying Fractions Simplify the fractions. Show work. \( \frac{4}{8}= \) \( \qquad \) 2) \( \frac{9}{15}-\frac{3}{=} \frac{3}{5} \) \( \frac{28}{42}= \) \( \qquad \) 4) \( \frac{9}{24}= \) \( \qquad \) \( \frac{10}{20}= \) \( \qquad \) 8) \( \frac{16}{40}= \) \( \qquad \) 142 \( \frac{25}{40}= \) \( \qquad \) 12) \( \frac{4}{12}= \) \( \qquad \) \( \frac{12}{15}= \) \( \qquad \) 14) \( \frac{2}{8}= \) \( \qquad \) 7) \( \frac{7}{42}= \) \( \qquad \) 16) \( \frac{45}{72}= \) \( \qquad \) \( \frac{18}{36}= \) \( \qquad \) 20) \( \frac{18}{30}= \) \( \qquad \) 2+1 \( \frac{12}{24}= \) \( \qquad \) 22) \( \frac{9}{36}= \) \( \qquad \) 123) \( \frac{30}{36}= \) \( \qquad \) 24) \( \frac{54}{72}= \) \( \qquad \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
Did you know that simplifying fractions dates back to ancient civilizations, where mathematicians like the Egyptians used similar methods to express ratios and measurements? They created fractions using unique symbols, and as fractions evolved, many cultures, including the Greeks and Romans, contributed to the understanding of numerical relationships. This led to the standardization we use today, making it easier for us to manage everything from cooking recipes to complex engineering calculations! In real life, understanding how to simplify fractions can be really handy! For example, if you're working on a recipe that serves four but you want to adjust it to serve two, simplifying a fraction helps make those adjustments easy-peasy! Let’s say a recipe calls for \( \frac{2}{3} \) cup of sugar; simplifying fractions can help you figure out that you need \( \frac{1}{3} \) cup instead, without all the fuss! So next time you’re in the kitchen, remember that simplifying fractions is not just math – it’s practical magic!
