Pregunta
upstudy study bank question image url

\[ (x+a)(x+b)=(x+a) x+(x+a) b \] Associative Property of Multiplication Commutative Property of Addition Distributive Property Associative Property of Addition Commutative Property of Multiplication

Ask by Cruz Alexander. in the United States
Jan 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation demonstrates the Distributive Property.

Solución

To determine which property is being illustrated by the equation \[ (x+a)(x+b)=(x+a) x+(x+a) b, \] let's analyze both sides of the equation step by step. 1. **Left Side:** - The left side is \((x+a)(x+b)\). This represents the multiplication of two binomials. 2. **Right Side:** - The right side is \((x+a)x + (x+a)b\). This shows that we are distributing \((x+a)\) across the terms \(x\) and \(b\). Now, let's identify the property being used: - The left side is a product of two expressions, while the right side shows the result of distributing \((x+a)\) over the sum \(x + b\). This is a clear application of the **Distributive Property**, which states that \(a(b+c) = ab + ac\). Thus, the equation demonstrates the **Distributive Property**. The other properties mentioned (Associative Property of Multiplication, Commutative Property of Addition, Associative Property of Addition, and Commutative Property of Multiplication) do not apply to this equation as it specifically illustrates the distribution of multiplication over addition. Therefore, the correct answer is: **Distributive Property**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The equation \((x+a)(x+b) = (x+a)x + (x+a)b\) illustrates the Distributive Property, which states that multiplying a sum by a number gives the same result as multiplying each addend individually and then adding the products. This concept is super handy when working with polynomials as it allows for easier expansion and simplification. In real-world applications, the Distributive Property is commonly used in budgeting and financial calculations. For instance, if you want to calculate the total cost of multiple items that come in sets, you can use distribution to make the math simpler. If you buy several sets of \(x\) items each costing \(a\) and \(b\), using distribution helps you quickly tally up the costs and keep your budget on track!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad