\( \left. \begin{array} { l } { \int \frac { x + 5 } { \sqrt { 9 - ( x - 3 ) ^ { 2 } } } d x } \\ { \left. \begin{array} { l } { a ^ { 2 } = 9 \quad u ^ { 2 } = ( x - 3 ) ^ { 2 } \quad x = u + 3 } \\ { a = x - 3 } \\ { d u = d x } \end{array} \right. } \\ { = \int \frac { u + 3 + 5 } { \sqrt { a ^ { 2 } - u ^ { 2 } } } d u } \\ { = \int \frac { u + 8 } { \sqrt { a ^ { 2 } - u ^ { 2 } } } d u } \\ { = \int \frac { u } { \sqrt { a ^ { 2 } - u ^ { 2 } } } d u + \int \frac { 8 } { \sqrt { a ^ { 2 } - u ^ { 2 } } } d u } \end{array} \right. \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
Did you know that this integral is related to the geometry of a circle? The expression \( \sqrt{9 - (x - 3)^2} \) describes a semicircle with a radius of 3 centered at (3,0) on the Cartesian plane. When you perform this integral, you’re calculating the area under the curve of that semicircle alongside some added complexity from the linear term \(x + 5\). If you're tackling a challenging integral like this, one common mistake is to mishandle the trigonometric or substitution identities while simplifying. Remember to keep track of your variables! When substituting \(u = x - 3\) ensures you also adjust your limits correctly if specified, and don’t forget to convert \(dx\) to \(du\) accurately. This might seem trivial, but it can significantly alter your results if overlooked!
