Pregunta
upstudy study bank question image url

Move the point and the vertex to graph the function \( f(x)=2(x+1)^{2}+2 \)

Ask by Martin Fernandez. in the United States
Jan 30,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph the function \( f(x) = 2(x + 1)^2 + 2 \), follow these steps: 1. **Identify the vertex**: The vertex is at \( (-1, 2) \). 2. **Plot the vertex**. 3. **Find additional points**: - \( (-2, 4) \) - \( (0, 4) \) - \( (1, 10) \) 4. **Draw the parabola** by connecting these points with a smooth curve. The graph is an upward-opening parabola with its vertex at \( (-1, 2) \).

Solución

To graph the function \( f(x) = 2(x + 1)^2 + 2 \), we can follow these steps: 1. **Identify the vertex**: The function is in vertex form, which is \( f(x) = a(x - h)^2 + k \), where \( (h, k) \) is the vertex of the parabola. In this case, we can see that: - \( a = 2 \) - \( h = -1 \) - \( k = 2 \) Therefore, the vertex of the function is at the point \( (-1, 2) \). 2. **Determine the direction of the parabola**: Since \( a = 2 \) is positive, the parabola opens upwards. 3. **Find additional points**: To graph the function accurately, we can find a few additional points by substituting values of \( x \) into the function. Let's calculate \( f(x) \) for \( x = -2, -1, 0, 1 \): - For \( x = -2 \): \[ f(-2) = 2(-2 + 1)^2 + 2 = 2(-1)^2 + 2 = 2 \cdot 1 + 2 = 4 \] - For \( x = -1 \): \[ f(-1) = 2(-1 + 1)^2 + 2 = 2(0)^2 + 2 = 2 \] - For \( x = 0 \): \[ f(0) = 2(0 + 1)^2 + 2 = 2(1)^2 + 2 = 2 \cdot 1 + 2 = 4 \] - For \( x = 1 \): \[ f(1) = 2(1 + 1)^2 + 2 = 2(2)^2 + 2 = 2 \cdot 4 + 2 = 8 + 2 = 10 \] 4. **Plot the points**: Now we have the following points to plot: - Vertex: \( (-1, 2) \) - Point 1: \( (-2, 4) \) - Point 2: \( (0, 4) \) - Point 3: \( (1, 10) \) 5. **Draw the graph**: Connect the points with a smooth curve to form the parabola. Now, let's summarize the points we found: - Vertex: \( (-1, 2) \) - Additional points: \( (-2, 4) \), \( (0, 4) \), \( (1, 10) \) The graph of the function \( f(x) = 2(x + 1)^2 + 2 \) is a parabola that opens upwards with its vertex at \( (-1, 2) \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To graph the function \( f(x) = 2(x+1)^2 + 2 \), start by identifying the vertex of the parabola. The vertex is found at the point \( (-1, 2) \) since the function is in vertex form \( a(x-h)^2 + k \), where \( (h, k) \) is the vertex. Next, you can plot additional points by choosing values for \( x \) around the vertex. For example, plug in \( x = -2 \) and \( x = 0 \) to find their corresponding \( f(x) \) values. This gives you points \( (-2, 4) \) and \( (0, 6) \). Draw a smooth curve through these points and the vertex to complete your graph!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad