Pregunta
upstudy study bank question image url

True or False? In Exercises 7-10, determine whether the statement is true or false. If it is false, rewrite it as a true statement. 7. About one-quarter of a data set falls below \( Q_{1} \). 8. The second quartile is the mean of an ordered data set. 9. An outlier is any number above \( Q_{3} \) or below \( Q_{1} \). 10. It is impossible to have a \( z \)-score of 0 . Using and Interpreting Concepts Finding Quartiles, Interquartile Range, and Outliers In Exercises 11 and 12, (a) find the quartiles, (b) find the interquartile range, and (c) identify any outliers. 11. \( 56 \quad 63 \) 51 \( \begin{array}{llllllllllllll}60 & 57 & 60 & 60 & 54 & 63 & 59 & 80 & 63 & 60 & 62 & 65\end{array} \) \[ \text { 12. } \begin{array}{llllllllll} 22 & 25 & 22 & 24 & 20 & 24 & 19 & 22 & 29 & 21 \\ 21 & 20 & 23 & 25 & 23 & 23 & 21 & 25 & 23 & 22 \end{array} \]

Ask by Ryan Clark. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**True or False:** 1. **True:** About one-quarter of the data falls below the first quartile (\( Q_{1} \)). 2. **False:** The second quartile (\( Q_{2} \)) is the median, not the mean. 3. **False:** An outlier is any number significantly above \( Q_{3} \) or below \( Q_{1} \), typically more than 1.5 times the interquartile range. 4. **False:** It is possible to have a \( z \)-score of 0, which means the data point is equal to the mean. **Exercises 11 and 12:** - **Exercise 11:** - **Quartiles:** - \( Q_{1} = 56 \) - \( Q_{2} = 60 \) - \( Q_{3} = 63 \) - **Interquartile Range (IQR):** 7 - **Outliers:** 80 - **Exercise 12:** - **Quartiles:** - \( Q_{1} = 21 \) - \( Q_{2} = 22.5 \) - \( Q_{3} = 24 \) - **Interquartile Range (IQR):** 3 - **Outliers:** 29

Solución

Sure, let's go through each of the statements and exercises step by step. --- ### **True or False** #### **7. About one-quarter of a data set falls below \( Q_{1} \).** **True.** - **Explanation:** \( Q_{1} \) (the first quartile) represents the 25th percentile of a data set. This means that 25% of the data falls below \( Q_{1} \). #### **8. The second quartile is the mean of an ordered data set.** **False.** - **Corrected Statement:** The second quartile is the **median** of an ordered data set. - **Explanation:** The second quartile (\( Q_{2} \)) is indeed the median, which is the middle value of an ordered data set. It is not necessarily the mean unless the data set is perfectly symmetrical. #### **9. An outlier is any number above \( Q_{3} \) or below \( Q_{1} \).** **False.** - **Corrected Statement:** An outlier is any number that is significantly above \( Q_{3} \) or below \( Q_{1} \), typically defined as being more than 1.5 times the interquartile range (IQR) above \( Q_{3} \) or below \( Q_{1} \). - **Explanation:** Simply being above \( Q_{3} \) or below \( Q_{1} \) does not necessarily make a data point an outlier. The standard definition involves being a certain distance beyond these quartiles, often 1.5 times the IQR. #### **10. It is impossible to have a \( z \)-score of 0.** **False.** - **Corrected Statement:** It is possible to have a \( z \)-score of 0, which indicates that the data point is equal to the mean of the data set. - **Explanation:** A \( z \)-score of 0 signifies that the value is exactly at the mean, neither above nor below it. --- ### **Using and Interpreting Concepts** #### **Exercise 11** **Data Set:** 56, 63, 51, 60, 57, 60, 60, 54, 63, 59, 80, 63, 60, 62, 65 **Step 1:** **Order the data set from smallest to largest.** Ordered Data: 51, 54, 56, 57, 59, 60, 60, 60, 62, 63, 63, 63, 65, 80 (Note: There are 15 data points.) **a. Find the Quartiles (\( Q_{1} \), \( Q_{2} \), \( Q_{3} \)):** - **Median (\( Q_{2} \))**: - Position: (15 + 1) / 2 = 8 - \( Q_{2} = 60 \) - **First Quartile (\( Q_{1} \))**: - Lower half: 51, 54, 56, 57, 59, 60, 60 - Median of lower half: 56 (4th value) - \( Q_{1} = 56 \) - **Third Quartile (\( Q_{3} \))**: - Upper half: 60, 62, 63, 63, 63, 65, 80 - Median of upper half: 63 (4th value) - \( Q_{3} = 63 \) **b. Find the Interquartile Range (IQR):** \[ IQR = Q_{3} - Q_{1} = 63 - 56 = 7 \] **c. Identify Any Outliers:** - **Lower Bound:** \( Q_{1} - 1.5 \times IQR = 56 - 10.5 = 45.5 \) - **Upper Bound:** \( Q_{3} + 1.5 \times IQR = 63 + 10.5 = 73.5 \) **Outliers:** Any data points below 45.5 or above 73.5 are considered outliers. - **Outliers in this data set:** 80 --- #### **Exercise 12** **Data Set:** 22, 25, 22, 24, 20, 24, 19, 22, 29, 21, 21, 20, 23, 25, 23, 23, 21, 25, 23, 22 **Step 1:** **Order the data set from smallest to largest.** Ordered Data: 19, 20, 20, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 25, 25, 25, 29 (Note: There are 20 data points.) **a. Find the Quartiles (\( Q_{1} \), \( Q_{2} \), \( Q_{3} \)):** - **Median (\( Q_{2} \))**: - Position: (20 + 1) / 2 = 10.5 - Average of 10th and 11th values: (22 + 23) / 2 = 22.5 - \( Q_{2} = 22.5 \) - **First Quartile (\( Q_{1} \))**: - Lower half (first 10 data points): 19, 20, 20, 21, 21, 21, 22, 22, 22, 22 - Median of lower half: (21 + 21) / 2 = 21 - \( Q_{1} = 21 \) - **Third Quartile (\( Q_{3} \))**: - Upper half (last 10 data points): 23, 23, 23, 23, 24, 24, 25, 25, 25, 29 - Median of upper half: (24 + 24) / 2 = 24 - \( Q_{3} = 24 \) **b. Find the Interquartile Range (IQR):** \[ IQR = Q_{3} - Q_{1} = 24 - 21 = 3 \] **c. Identify Any Outliers:** - **Lower Bound:** \( Q_{1} - 1.5 \times IQR = 21 - 4.5 = 16.5 \) - **Upper Bound:** \( Q_{3} + 1.5 \times IQR = 24 + 4.5 = 28.5 \) **Outliers:** Any data points below 16.5 or above 28.5 are considered outliers. - **Outliers in this data set:** 29 --- ### **Summary** - **Statements 7:** True - **Statement 8:** False – Corrected to state that \( Q_{2} \) is the median. - **Statement 9:** False – Corrected to define outliers based on 1.5×IQR beyond quartiles. - **Statement 10:** False – Corrected to acknowledge that a \( z \)-score of 0 is possible. - **Exercise 11:** - \( Q_{1} = 56 \) - \( Q_{2} = 60 \) - \( Q_{3} = 63 \) - \( IQR = 7 \) - **Outlier:** 80 - **Exercise 12:** - \( Q_{1} = 21 \) - \( Q_{2} = 22.5 \) - \( Q_{3} = 24 \) - \( IQR = 3 \) - **Outlier:** 29 If you need further explanations or assistance with any of these problems, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

About one-quarter of a data set does indeed fall below \( Q_{1} \) since \( Q_{1} \) represents the first quartile, dividing the lowest 25% of data from the rest. In contrast, the second quartile, or median, is the value that separates the data into two equal halves, not the mean. Thus, the statement regarding the second quartile is false; the correct phrasing would be: “The second quartile is the median of an ordered data set.” An outlier in statistics is typically defined as a data point that lies beyond \( Q_{3} + 1.5 \times IQR \) or below \( Q_{1} - 1.5 \times IQR \), where IQR is the interquartile range. Therefore, the statement that describes any number above \( Q_{3} \) or below \( Q_{1} \) as an outlier is misleading; it should specifically pertain to the criteria mentioned above. Also, a \( z \)-score of 0 indicates that a data point is exactly at the mean and is indeed possible, making that statement false as well.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad