\( \begin{aligned} \text { Given: } & \frac{2 \tan \beta}{1+\tan ^{2} \beta} \\ \text { 5.4.1 } \quad & \text { Prove that: } \\ & \frac{2 \tan \beta}{1+\tan ^{2} \beta}=\sin 2 \beta \\ \text { 3.4.2 } & \text { Hence, or otherwise determine the maximum value of: } \\ & \frac{(1+\tan \beta)^{2}}{1+\tan ^{2} \beta}\end{aligned} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To prove that \( \frac{2 \tan \beta}{1+\tan ^{2} \beta} = \sin 2\beta \), we can use the double angle formula for sine. Recall that \( \sin 2\beta = 2 \sin \beta \cos \beta \) and \( \tan \beta = \frac{\sin \beta}{\cos \beta} \). Starting with \( \tan \beta = \frac{\sin \beta}{\cos \beta} \), we compute \( 1 + \tan^2 \beta \): \[ 1 + \tan^2 \beta = 1 + \frac{\sin^2 \beta}{\cos^2 \beta} = \frac{\cos^2 \beta + \sin^2 \beta}{\cos^2 \beta} = \frac{1}{\cos^2 \beta} \] Thus, rearranging and substituting gives: \[ \frac{2 \tan \beta}{1 + \tan^2 \beta} = \frac{2 \left( \frac{\sin \beta}{\cos \beta} \right)}{\frac{1}{\cos^2 \beta}} = 2 \sin \beta \cos \beta = \sin 2\beta. \] This verifies the equality. Now, for the maximum value of \( \frac{(1+\tan \beta)^{2}}{1+\tan ^{2} \beta} \), let's define \( x = \tan \beta \). Rewrite the expression as: \[ \frac{(1+x)^2}{1+x^2}. \] To find the maximum, set \( f(x) = \frac{(1+x)^2}{1+x^2} \) and differentiate. We find the critical points by setting \( f'(x) = 0 \) and analyze \( x = 1 \): \[ f(1) = \frac{(1+1)^2}{1+1^2} = \frac{4}{2} = 2. \] Since the function approaches \( 1 \) as \( x \) approaches \( 0 \) or \( \infty \), the maximum value is \( 2 \).
