At \( 400 \mathrm{~K}, \mathrm{~N}_{2} \mathrm{O}_{4} \) decomposes into \( \mathrm{NO}_{2} \) in the gas phase: \( \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) \) In an experiment, 0.328 g of of \( \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \) were placed in a 0.500 L evacuated flask at 400 K , and allowed to come to equilibrium, the final pressure was 0.331 atm. What were the partial pressures of \( \mathrm{N}_{2} \mathrm{O}_{4} \) and \( \mathrm{NO}_{2} \), and what is the equilibrium constant? \( \mathrm{P}_{\mathrm{N} 2 \mathrm{O} 4}=0.135 \) \( \mathrm{P}_{\mathrm{NO} 2}=0.196 \) atm \( \mathrm{~K}_{\mathrm{c}}= \) i eTextbook and Media
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To calculate the equilibrium constant \( K_c \) for the reaction, we can use the equilibrium partial pressures of the gases involved. The expression for the equilibrium constant for the decomposition of \( N_2O_4 \) into \( NO_2 \) is: \[ K_c = \frac{P_{NO_2}^2}{P_{N_2O_4}} \] Substituting the partial pressures provided: \[ K_c = \frac{(0.196)^2}{0.135} \approx 0.283 \] The equilibrium constant \( K_c \) at 400 K for this reaction is approximately 0.283. Additionally, it's essential to remember that equilibrium constants are temperature-dependent. In this case, as the temperature changes, the value of \( K_c \) will also vary, reflecting how the equilibrium position shifts based on changes in temperature conditions. So, if you were to perform this experiment at a different temperature, the calculated \( K_c \) could be significantly different!
