In a chemical reaction, one unit of compound \( y \) and one unit of compound \( Z \) are comvertes into a singlie umit of compound \( x \). Let \( x \) be the amount of compound \( x \) tonmed. The rate of and \( Z \). From this equation you obtain the following.
\[
\int \frac{1}{\left(y_{0}-x\right)\left(z_{0}-x\right)} d x=\int t d t
\]
(a) Solve for \( * \) as a function of \( t \).
\[
x=\square
\]
(b) Use the result of part (a) to find \( x \) as \( t \rightarrow \infty \) if \( y_{0}z_{50} \) and \( y_{0}=z_{0} \).
(4)
\[
\begin{array}{l}
Y_{0}+t_{0} \\
\lim _{x \rightarrow-\infty} x=\square
\end{array}
\]
(ii)
\[
\begin{array}{l}
y_{0}>z_{0} \\
x-m=\square
\end{array}
\]
(iv)
\[
\begin{array}{l}
y_{0}=2_{0} \\
-\infty x=\square=\square
\end{array}
\]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To solve the integral on the left, we can apply partial fraction decomposition. The expression \(\frac{1}{(y_0 - x)(z_0 - x)}\) can be rewritten, and integrating will yield a logarithmic function. The solution for \(x\) as a function of \(t\) turns out to be something like \(x = y_0 + z_0 - \frac{C}{t}\), where \(C\) is a constant that can be determined from initial conditions. As \(t\) approaches infinity, if \(y_0 < z_0\), \(x\) approaches \(y_0\); if \(y_0 > z_0\), \(x\) approaches \(z_0\); and if \(y_0 = z_0\), then \(x\) approaches \(y_0\) (or \(z_0\), they are equal). Essentially, it's a race to see which compound runs out first, leading to these limits as \(t\) goes wild!
