Pregunta
upstudy study bank question image url

Evaluate the integral. (Remember to use absolute values where appropriate. Remember the constant of integration.) \[ \int \frac{37 x+5}{(6 x+1)(x-1)} d x \]

Ask by Bowers Carlson. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The integral evaluates to \( \frac{1}{6} \ln|6x+1| + 6 \ln|x−1| + C \).

Solución

We wish to evaluate   ∫ (37x + 5)⁄[(6x + 1)(x − 1)] dx. Step 1. Express the integrand in partial fractions. Write   (37x + 5)/[(6x+1)(x−1)] = A/(6x+1) + B/(x−1). Multiply both sides by (6x+1)(x−1) to obtain   37x + 5 = A(x − 1) + B(6x + 1). Expanding the right-hand side gives   37x + 5 = (A + 6B)x + (B − A). Thus, equate coefficients:   Coefficient of x: A + 6B = 37,   Constant term: B − A = 5. Solve the second equation for B:   B = A + 5. Substitute B = A + 5 into A + 6B = 37:   A + 6(A + 5) = 37   A + 6A + 30 = 37   7A = 7  ⟹ A = 1. Then, B = A + 5 = 1 + 5 = 6. Step 2. Write the integral as a sum of two simpler integrals:   ∫ (37x ─ 5)/[(6x+1)(x−1)] dx = ∫ [1/(6x+1) + 6/(x−1)] dx     = ∫ 1/(6x+1) dx + 6∫ 1/(x−1) dx. Step 3. Evaluate each integral. Integral 1: Let u = 6x + 1 ⇒ du = 6 dx, so dx = du/6. Then   ∫ 1/(6x+1) dx = ∫ 1/u · (du/6) = 1/6 ∫ du/u = (1/6) ln|u| + C₁ = (1/6) ln|6x+1| + C₁. Integral 2: 6∫ 1/(x−1) dx = 6 ln|x−1| + C₂. Thus, combining the two results (and merging constants into a single constant C):   (1/6) ln|6x+1| + 6 ln|x−1| + C. Final Answer:   ∫ (37x + 5)/[(6x+1)(x−1)] dx = (1/6) ln|6x+1| + 6 ln|x−1| + C.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To evaluate the integral \[ \int \frac{37x + 5}{(6x + 1)(x - 1)} \, dx, \] we can use partial fraction decomposition. We can express the integrand in the form: \[ \frac{37x + 5}{(6x + 1)(x - 1)} = \frac{A}{6x + 1} + \frac{B}{x - 1}, \] where \(A\) and \(B\) are constants to be determined. Multiplying both sides by the denominator \((6x + 1)(x - 1)\), we get: \[ 37x + 5 = A(x - 1) + B(6x + 1). \] Expanding the right-hand side, we have: \[ 37x + 5 = Ax - A + 6Bx + B. \] This simplifies to: \[ (6B + A)x + (B - A) = 37x + 5. \] Now, we can equate the coefficients of like terms: 1. For \(x\): \(6B + A = 37\) 2. For the constant: \(B - A = 5\) Now, we can solve this system of equations. From the second equation, we can express \(A\) in terms of \(B\): \[ A = B - 5. \] Substituting this into the first equation gives: \[ 6B + (B - 5) = 37, \] \[ 7B - 5 = 37, \] \[ 7B = 42 \implies B = 6. \] Now substitute \(B\) back to find \(A\): \[ A = 6 - 5 = 1. \] Thus, the partial fractions are: \[ \frac{37x + 5}{(6x + 1)(x - 1)} = \frac{1}{6x + 1} + \frac{6}{x - 1}. \] Now we can rewrite the integral: \[ \int \frac{37x + 5}{(6x + 1)(x - 1)} \, dx = \int \left( \frac{1}{6x + 1} + \frac{6}{x - 1} \right) \, dx. \] This splits into two integrals: \[ \int \frac{1}{6x + 1} \, dx + 6 \int \frac{1}{x - 1} \, dx. \] Each integral can be evaluated separately. The first integral can be solved by a simple substitution \(u = 6x + 1\), \(du = 6 \, dx\), so: \[ \int \frac{1}{6x + 1} \, dx = \frac{1}{6} \ln |6x + 1| + C_1. \] The second integral gives: \[ 6 \int \frac{1}{x - 1} \, dx = 6 \ln |x - 1| + C_2. \] Putting everything together, we combine the constants \(C_1\) and \(C_2\) into a single constant \(C\): \[ \int \frac{37x + 5}{(6x + 1)(x - 1)} \, dx = \frac{1}{6} \ln |6x + 1| + 6 \ln |x - 1| + C. \] Finally, we can express the answer compactly: \[ \int \frac{37x + 5}{(6x + 1)(x - 1)} \, dx = \frac{1}{6} \ln |6x + 1| + 6 \ln |x - 1| + C. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad