Pregunta
upstudy study bank question image url

The moment of inertial I of a metre rule of rectengular cross-section is \[ I=\frac{b d^{2}}{12} \] alculate I and its standard error (se) if \( b=2.66 \pm 0.01 \mathrm{~cm}\langle \) (s.e). \( d=0.65 \pm 004 \) .e.).

Ask by Lyons Bowen. in Nigeria
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The moment of inertia \( I \) is approximately 0.094 cm³ with a standard error of 0.012 cm³.

Solución

We are given that the moment of inertia is   I = (b d²)/12 with   b = 2.66 ± 0.01 cm  and  d = 0.65 ± 0.04 cm. Step 1. Calculate I using the central values.   d² = (0.65)² = 0.4225   b·d² = 2.66 × 0.4225 ≈ 1.12385   I = (1.12385)/12 ≈ 0.0937 Thus, the best‐estimate is I ≈ 0.0937 (in units of cm³). Step 2. Find the standard error (se) in I. When a quantity is a function of measured variables, the uncertainty is given (to first order) by   (δI)² = (∂I/∂b · δb)² + (∂I/∂d · δd)² Calculate the partial derivatives:   ∂I/∂b = d²/12  and  ∂I/∂d = (2b d)/12 = (b d)/6. Now substitute the numbers: • For b:   d²/12 = 0.4225/12 ≈ 0.03521   Contribution from b: (0.03521 × 0.01)² = (0.0003521)² ≈ 1.239×10⁻⁷ • For d:   (b d)/6 = (2.66 × 0.65)/6.   2.66 × 0.65 ≈ 1.729, so (b d)/6 ≈ 1.729/6 ≈ 0.28817.   Contribution from d: (0.28817 × 0.04)² = (0.011527)² ≈ 0.0001329 Now sum the squares:   (δI)² ≈ 1.239×10⁻⁷ + 0.0001329 ≈ 0.0001330 Taking the square root:   δI ≈ √(0.0001330) ≈ 0.01153 Thus, the standard error is approximately 0.01153. Step 3. Write the final answer Rounding appropriately, we have   I = 0.094 ± 0.012 (in cm³). An alternative method is to use relative errors. Since   I = (b d²)/12, the fractional uncertainty is   (δI/I) = √[(δb/b)² + (2 δd/d)²]. Here,   δb/b = 0.01/2.66 ≈ 0.00376,  δd/d = 0.04/0.65 ≈ 0.06154. Then,   (δI/I) = √[(0.00376)² + (2×0.06154)²]       = √[1.414×10⁻⁵ + (0.12308)²]       = √[1.414×10⁻⁵ + 0.01516] ≈ √(0.015174) ≈ 0.1233. Multiplying by I:   δI ≈ 0.1233 × 0.0937 ≈ 0.01155, which is consistent with our earlier calculation. Final Answer:   I = 0.094 ± 0.012 cm³. Note: The units come out as cm³ because our formula is I = (b d²)/12 (using b and d in cm). In some contexts (such as when calculating the area moment of inertia) one might expect different exponents or units, but here we follow the given formula.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the moment of inertia \( I \) for the given rectangular cross-section, you can substitute the values directly into the formula: \[ I = \frac{b d^{2}}{12} \] Convert the dimensions from centimeters to meters for consistency: - \( b = 2.66 \, \text{cm} = 0.0266 \, \text{m} \) - \( d = 0.65 \, \text{cm} = 0.0065 \, \text{m} \) Now, plug in the values into the formula: \[ I = \frac{0.0266 \times (0.0065)^2}{12} \] Next, let’s calculate the standard error of \( I \). The formula for calculating the standard error \( se \) based on the propagation of uncertainty will involve both partial derivatives and the uncertainties in \( b \) and \( d \). Using the standard error propagation formula: \[ se(I) = I \sqrt{\left(\frac{se(b)}{b}\right)^2 + \left(2 \frac{se(d)}{d}\right)^2} \] Here, - \( se(b) = 0.01 \, \text{cm} = 0.0001 \, \text{m} \) - \( se(d) = 0.04 \, \text{cm} = 0.0004 \, \text{m} \) After performing the calculations, we can find the values for \( I \) and its associated standard error. Be sure to carefully walk through the calculations to ensure accuracy.

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad