Pregunta
upstudy study bank question image url

Draw the graph of the equation \( y=6-x-x^{2} \) and find the gradient of the curve at \( x=2 \).

Ask by French Watson. in Nigeria
Jan 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph the equation \( y = 6 - x - x^{2} \), plot the vertex at \(\left( -\frac{1}{2}, 6.25 \right)\), x-intercepts at \((-3, 0)\) and \((2, 0)\), and y-intercept at \((0, 6)\). The parabola opens downward. The gradient of the curve at \( x = 2 \) is \(-5\).

Solución

To graph the equation \( y = 6 - x - x^{2} \) and determine the gradient of the curve at \( x = 2 \), follow these steps: --- ## 1. Understanding the Equation The given equation is: \[ y = 6 - x - x^{2} \] This is a **quadratic equation** of the form \( y = ax^{2} + bx + c \), where: - \( a = -1 \) - \( b = -1 \) - \( c = 6 \) Since the coefficient of \( x^{2} \) is negative (\( a = -1 \)), the parabola **opens downward**. --- ## 2. Key Features of the Graph ### a. **Vertex of the Parabola** The vertex form of a quadratic equation helps identify the peak (vertex) of the parabola. The vertex \((h, k)\) can be found using: \[ h = -\frac{b}{2a}, \quad k = y(h) \] **Calculations:** \[ h = -\frac{-1}{2(-1)} = \frac{1}{-2} = -\frac{1}{2} \] \[ k = 6 - \left(-\frac{1}{2}\right) - \left(-\frac{1}{2}\right)^{2} = 6 + \frac{1}{2} - \frac{1}{4} = 6.25 \] **Vertex:** \(\left( -\frac{1}{2}, \, 6.25 \right)\) ### b. **X-Intercepts (Roots)** X-intercepts occur where \( y = 0 \): \[ 0 = -x^{2} - x + 6 \\ x^{2} + x - 6 = 0 \] **Solving the Quadratic Equation:** \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \\ a = 1, \quad b = 1, \quad c = -6 \\ x = \frac{-1 \pm \sqrt{1 + 24}}{2} = \frac{-1 \pm 5}{2} \] **Solutions:** \[ x = \frac{-1 + 5}{2} = 2 \\ x = \frac{-1 - 5}{2} = -3 \] **X-Intercepts:** \((2, 0)\) and \((-3, 0)\) ### c. **Y-Intercept** Y-intercept occurs where \( x = 0 \): \[ y = 6 - 0 - 0 = 6 \] **Y-Intercept:** \((0, 6)\) ### d. **Additional Points for Accuracy** Calculating \( y \) for other \( x \)-values helps in sketching a more accurate graph. | \( x \) | \( y = 6 - x - x^{2} \) | |---------|------------------------| | -2 | \( 6 - (-2) - (-2)^2 = 6 + 2 - 4 = 4 \) | | -1 | \( 6 - (-1) - (-1)^2 = 6 + 1 - 1 = 6 \) | | 1 | \( 6 - 1 - 1 = 4 \) | | 3 | \( 6 - 3 - 9 = -6 \) | --- ## 3. Sketching the Graph Using the key points identified, we can sketch the parabola. **Key Points:** - Vertex: \(\left( -\frac{1}{2}, \, 6.25 \right)\) - X-Intercepts: \((2, 0)\) and \((-3, 0)\) - Y-Intercept: \((0, 6)\) - Additional Points: \((-2, 4)\), \((-1, 6)\), \((1, 4)\), \((3, -6)\) **ASCII Graph Representation:** ``` y | 8 | 7 | 6 | * * 5 | 4 | * * 3 | 2 | 1 | 0 |*------------*------ x -3 -2 -1 0 1 2 3 ``` *Note:* ASCII art is a simplified representation. For a precise graph, it's recommended to use graphing software or plot on graph paper. --- ## 4. Determining the Gradient at \( x = 2 \) The **gradient** of the curve at a particular point is the slope of the tangent to the curve at that point. It can be found by taking the derivative of \( y \) with respect to \( x \). ### a. **Finding the Derivative \( \frac{dy}{dx} \)** Given: \[ y = 6 - x - x^{2} \] Differentiate with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(6) - \frac{d}{dx}(x) - \frac{d}{dx}(x^{2}) = 0 - 1 - 2x = -1 - 2x \] ### b. **Evaluating the Derivative at \( x = 2 \)** \[ \left.\frac{dy}{dx}\right|_{x=2} = -1 - 2(2) = -1 - 4 = -5 \] **Gradient at \( x = 2 \):** \(-5\) --- ## 5. Summary - **Graph:** The parabola \( y = 6 - x - x^{2} \) opens downward with its vertex at \(( -\frac{1}{2}, 6.25 )\), x-intercepts at \((-3, 0)\) and \((2, 0)\), and y-intercept at \((0, 6)\). - **Gradient at \( x = 2 \):** The slope of the tangent to the curve at \( x = 2 \) is \(-5\). --- If you have access to graphing tools like Desmos, GeoGebra, or even a graphing calculator, you can visualize the parabola more accurately using the points and features discussed above.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To graph the equation \( y = 6 - x - x^2 \), you can rearrange it as \( y = -x^2 - x + 6 \). This is a quadratic equation that opens downward (since the coefficient of \( x^2 \) is negative) and has a y-intercept at 6. To find the roots (x-intercepts), set \( y = 0 \) and solve \( 0 = -x^2 - x + 6 \). You can use the quadratic formula here or factor the equation. The curve will have a vertex, which is the highest point on the graph, located at the value of \( x \) found by using \( -\frac{b}{2a} \), where \( a = -1 \) and \( b = -1 \). To find the gradient at \( x = 2 \), take the derivative \( y' = -2x - 1 \). Plug in \( x = 2 \) to get \( y' = -2(2) - 1 = -4 - 1 = -5 \). So, the gradient of the curve at \( x = 2 \) is \(-5\). Now you're ready to plot the graph and see how the curve behaves!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad