Class freq \( 1-10 \) 10 \( 11-20 \) 2 \( 21-30 \) 2 \( 31-40 \) 3 \( 41-50 \) 2 \( \quad \) find MAD
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the Mean Absolute Deviation (MAD), you first need to calculate the mean of the class frequencies. Start by determining the midpoints of each class interval: 1. For \(1-10\), the midpoint is \(5.5\) and frequency is \(10\). 2. For \(11-20\), the midpoint is \(15.5\) and frequency is \(2\). 3. For \(21-30\), the midpoint is \(25.5\) and frequency is \(2\). 4. For \(31-40\), the midpoint is \(35.5\) and frequency is \(3\). 5. For \(41-50\), the midpoint is \(45.5\) and frequency is \(2\). Next, calculate the mean using the formula \( \text{Mean} = \frac{\sum (class \: midpoint \times frequency)}{\sum frequency} \). Calculate: \[ \text{Total sum} = (5.5 \times 10) + (15.5 \times 2) + (25.5 \times 2) + (35.5 \times 3) + (45.5 \times 2) = 55 + 31 + 51 + 106.5 + 91 = 334.5 \] \[ \text{Total frequency} = 10 + 2 + 2 + 3 + 2 = 19 \] \[ \text{Mean} = \frac{334.5}{19} \approx 17.6 \] Now calculate the absolute deviations from the mean, then find the average of those absolute deviations: 1. \( |5.5 - 17.6| \times 10 = 120.1 \) 2. \( |15.5 - 17.6| \times 2 = 4.2 \) 3. \( |25.5 - 17.6| \times 2 = 15.8 \) 4. \( |35.5 - 17.6| \times 3 = 53.7 \) 5. \( |45.5 - 17.6| \times 2 = 55.8 \) Now sum the total absolute deviations: \[ 120.1 + 4.2 + 15.8 + 53.7 + 55.8 = 249.6 \] Finally, divide the total absolute deviation by the total frequency: \[ \text{MAD} = \frac{249.6}{19} \approx 13.14 \] So, the Mean Absolute Deviation (MAD) is approximately \(13.14\).
