Pregunta
upstudy study bank question image url

A stone is thrown vertically into the air at an initial velocity of \( 73 \mathrm{ft} / \mathrm{s} \). On a different planet, the height s (in feet) of the stone above the ground after t seconds is \( \mathrm{s}=73 \mathrm{t}-5 \mathrm{t}^{2} \) and on Earth it is \( \mathrm{s}=73 \mathrm{t}-16 \mathrm{t}^{2} \). How much higher will the stone travel on the other planet than on Earth? When an object that is thrown upwards reaches its highest point (just before it starts to fall back to the ground), its maximum heights of the two objects, use the

Ask by Flynn Hall. in the United States
Mar 12,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The stone travels approximately 183.22 feet higher on the other planet than on Earth.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To find how much higher the stone will travel on the other planet compared to Earth, we need to determine the maximum height reached in both scenarios. On the planet described by the equation \( s = 73t - 5t^2 \), the height is maximized by finding the vertex of the parabola represented by this quadratic equation. The time to reach the maximum height can be found using the formula \( t = -\frac{b}{2a} \). Substituting \( a = -5 \) and \( b = 73 \), we get \( t = \frac{73}{10} = 7.3 \) seconds. Plugging that value back into the height equation gives: \[ s = 73(7.3) - 5(7.3)^2 \] Calculating this will yield the maximum height on that planet. On Earth, we use the formula \( s = 73t - 16t^2 \), where using the same vertex formula gives \( t = \frac{73}{32} \approx 2.28125 \) seconds, and plugging that time back into the height equation will give the maximum height on Earth. The difference between these two heights will show how much higher the stone travels on the other planet compared to Earth. To make things more relatable, just picture launching a ball straight up at a park. On our planet (Earth), it might peak at a certain height before gravity brings it back down, but on another planet, where gravity acts weaker (represented by the smaller coefficient of \( t^2 \)), that same ball could soar even higher, giving an enthusiastic boost to your throwing arm! Speaking of jumping, isn’t it fascinating how different celestial bodies have varying gravitational pulls? For instance, on the Moon, your weight is about 1/6th of what it is on Earth, so if you threw that same stone, it would fly even higher and longer. Next time you daydream about cosmic adventures, remember that your throw would make you the star of the show!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad