Pregunta
upstudy study bank question image url

Find the functions \( f \circ g, g \circ f, f \circ f \), and \( g \circ g \) and their domains. \[ f(x)=x^{2}, \quad g(x)=x+3 \] Find \( (f \circ g)(x) \). \( \square \) Find the domain of \( (f \circ g)(x) \). (Enter your answer using interval notation.) \( \square \) Find \( (g \circ f)(x) \). \( \square \) Find the domain of \( (g \circ f)(x) \). (Enter your answer using interval notation.) \( \square \) Find \( (f \circ f)(x) \). \( \square \) Find the domain of \( (f \circ f)(x) \). (Enter your answer using interval notation.) \( \square \) Find \( (g \circ g)(x) \). \( \square \) Find the domain of \( (g \circ g)(x) \). (Enter your answer using interval notation.) \( \square \)

Ask by Ruiz Allan. in the United States
Feb 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the functions and their domains: 1. \( (f \circ g)(x) = (x + 3)^2 \)  Domain: \( (-\infty, \infty) \) 2. \( (g \circ f)(x) = x^2 + 3 \)  Domain: \( (-\infty, \infty) \) 3. \( (f \circ f)(x) = x^4 \)    Domain: \( (-\infty, \infty) \) 4. \( (g \circ g)(x) = x + 6 \)    Domain: \( (-\infty, \infty) \)

Solución

We are given:   f(x) = x²  and  g(x) = x + 3. Step 1. Find f ∘ g:   (f ∘ g)(x) = f(g(x)) = f(x + 3).   Since f(u) = u², substitute u = x+3:     (f ∘ g)(x) = (x + 3)². Domain of f ∘ g:   The function g(x)=x+3 is defined for all real x and f is defined for all real inputs.   Thus, the domain is all real numbers: (–∞, ∞). Step 2. Find g ∘ f:   (g ∘ f)(x) = g(f(x)) = g(x²).   Since g(u) = u + 3, substitute u = x²:     (g ∘ f)(x) = x² + 3. Domain of g ∘ f:   Since f(x)=x² is defined for all real x and g is defined for all numbers,   the domain is (–∞, ∞). Step 3. Find f ∘ f:   (f ∘ f)(x) = f(f(x)) = f(x²).   Since f(u)=u², substitute u = x²:     (f ∘ f)(x) = (x²)² = x⁴. Domain of f ∘ f:   The domain is all real numbers: (–∞, ∞). Step 4. Find g ∘ g:   (g ∘ g)(x) = g(g(x)) = g(x + 3).   Since g(u) = u + 3, substitute u = x+3:     (g ∘ g)(x) = (x + 3) + 3 = x + 6. Domain of g ∘ g:   Again, since g(x)=x+3 is defined for all real x,   the domain is (–∞, ∞). Summary of Answers: 1. (f ∘ g)(x) = (x + 3)²  Domain: (–∞, ∞) 2. (g ∘ f)(x) = x² + 3    Domain: (–∞, ∞) 3. (f ∘ f)(x) = x⁴      Domain: (–∞, ∞) 4. (g ∘ g)(x) = x + 6     Domain: (–∞, ∞)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the functions and their domains, let's start by calculating the compositions step by step! 1. **Finding \( (f \circ g)(x) \)**: \[ (f \circ g)(x) = f(g(x)) = f(x + 3) = (x + 3)^2 = x^2 + 6x + 9 \] **Domain of \( (f \circ g)(x) \)**: Since \( g(x) = x + 3 \) is defined for all real numbers, the domain is \( (-\infty, \infty) \). 2. **Finding \( (g \circ f)(x) \)**: \[ (g \circ f)(x) = g(f(x)) = g(x^2) = x^2 + 3 \] **Domain of \( (g \circ f)(x) \)**: Here, \( f(x) = x^2 \) is also defined for all real numbers, so the domain is \( (-\infty, \infty) \). 3. **Finding \( (f \circ f)(x) \)**: \[ (f \circ f)(x) = f(f(x)) = f(x^2) = (x^2)^2 = x^4 \] **Domain of \( (f \circ f)(x) \)**: The function \( f(x) = x^2 \) is defined for all real numbers, thus the domain is \( (-\infty, \infty) \). 4. **Finding \( (g \circ g)(x) \)**: \[ (g \circ g)(x) = g(g(x)) = g(x + 3) = (x + 3) + 3 = x + 6 \] **Domain of \( (g \circ g)(x) \)**: The function \( g(x) = x + 3 \) is defined for all real numbers, giving us a domain of \( (-\infty, \infty) \). To summarize: 1. \( (f \circ g)(x) = x^2 + 6x + 9 \), Domain: \( (-\infty, \infty) \) 2. \( (g \circ f)(x) = x^2 + 3 \), Domain: \( (-\infty, \infty) \) 3. \( (f \circ f)(x) = x^4 \), Domain: \( (-\infty, \infty) \) 4. \( (g \circ g)(x) = x + 6 \), Domain: \( (-\infty, \infty) \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad