Pregunta
upstudy study bank question image url

9. The sum of the measures of the angles of a regular polygon is 5040 . Find the measure of each angle.

Ask by Owen Ryan. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Each interior angle measures 168 degrees.

Solución

To determine the measure of each interior angle of a regular polygon whose angle sum is 5,040°, follow these steps: 1. **Understand the Formula for the Sum of Interior Angles:** The sum of the interior angles \( S \) of a polygon with \( n \) sides is given by: \[ S = (n - 2) \times 180^\circ \] 2. **Set Up the Equation:** Given that \( S = 5,040^\circ \), plug this into the formula: \[ (n - 2) \times 180^\circ = 5,040^\circ \] 3. **Solve for \( n \):** \[ n - 2 = \frac{5,040^\circ}{180^\circ} = 28 \] \[ n = 28 + 2 = 30 \] So, the polygon has **30 sides**. 4. **Find the Measure of Each Interior Angle:** For a regular polygon (where all interior angles are equal), each interior angle \( A \) is: \[ A = \frac{S}{n} = \frac{5,040^\circ}{30} = 168^\circ \] Alternatively, you can use the direct formula for each interior angle: \[ A = \left( \frac{n - 2}{n} \right) \times 180^\circ = \left( \frac{30 - 2}{30} \right) \times 180^\circ = \frac{28}{30} \times 180^\circ = 168^\circ \] **Answer:** Each interior angle measures 168 degrees.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the measure of each angle in the polygon, we first need to find the number of sides in the polygon. The formula for the sum of the interior angles of a polygon with \( n \) sides is \( S = (n - 2) \times 180 \). Setting this equal to 5040 gives us: \[ (n - 2) \times 180 = 5040 \] Solving for \( n \): \[ n - 2 = \frac{5040}{180} = 28 \implies n = 30 \] Now, to find the measure of each interior angle, we use the formula for a regular polygon's angle: \[ \text{Each angle} = \frac{S}{n} = \frac{5040}{30} = 168 \] So, each angle measures 168 degrees! Now, isn’t it fascinating how polygons can take us on a journey through geometry? Imagine visualizing a regular 30-sided polygon—a shape so mesmerizing that it could seemingly go on forever! Each angle gracefully measures 168 degrees, creating their own little world of symmetrical beauty. You might find it interesting how polygons exist all around us in nature and architecture! From man-made structures emulating geometric shapes to natural formations like crystalline structures, polygons are literally everywhere. Exploring their unique properties can deepen your understanding of geometry and inspire you in creative projects, like designing patterns for art or architecture!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad