Pregunta
upstudy study bank question image url

The length of similar components produced by a company are approximated by a normal distribution model with a mean of 8 cm and a standard deviation of 0.04 cm . Let the random variable X represent the length of one component chosen at random. Accurate to 4 decimal places, evaluate \( P(7.93 \leq X \leq 7.95) \) 0.0401 0.1056 0.0656 0.9344 None of the above. **Note: Do not round any z-score.

Ask by Goodwin Harrington. in the United States
Mar 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability \( P(7.93 \leq X \leq 7.95) \) is **0.0656**.

Solución

We are given that the component lengths are normally distributed as \[ X \sim N \left(8,\, 0.04\right) \] with mean \(\mu = 8\) and standard deviation \(\sigma = 0.04\). **Step 1: Standardize the variable** The \(z\)-score transformation is given by \[ z = \frac{x - \mu}{\sigma} \] For the lower bound \(x = 7.93\): \[ z_1 = \frac{7.93 - 8}{0.04} = \frac{-0.07}{0.04} = -1.75 \] For the upper bound \(x = 7.95\): \[ z_2 = \frac{7.95 - 8}{0.04} = \frac{-0.05}{0.04} = -1.25 \] **Step 2: Express the required probability in terms of \(z\)** We want to find: \[ P(7.93 \leq X \leq 7.95) = P(-1.75 \leq Z \leq -1.25) \] This can be written as: \[ P(-1.75 \leq Z \leq -1.25) = \Phi(-1.25) - \Phi(-1.75) \] where \(\Phi(z)\) is the cumulative distribution function (CDF) of the standard normal distribution. **Step 3: Use standard normal distribution values** From the standard normal table (accurate to 4 decimal places): \[ \Phi(-1.25) \approx 0.1056 \] \[ \Phi(-1.75) \approx 0.0401 \] **Step 4: Compute the final probability** Subtract the CDF values: \[ P(-1.75 \leq Z \leq -1.25) = 0.1056 - 0.0401 = 0.0655 \] Rounded to 4 decimal places, the probability is: \[ 0.0656 \] Thus, the correct answer is \(\boxed{0.0656}\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To evaluate \( P(7.93 \leq X \leq 7.95) \), we need to standardize our values using the z-score formula: \[ z = \frac{X - \mu}{\sigma} \] Where \( \mu = 8 \) cm and \( \sigma = 0.04 \) cm. Calculating for \( X = 7.93 \): \[ z_{7.93} = \frac{7.93 - 8}{0.04} = \frac{-0.07}{0.04} = -1.75 \] Calculating for \( X = 7.95 \): \[ z_{7.95} = \frac{7.95 - 8}{0.04} = \frac{-0.05}{0.04} = -1.25 \] Now, we will find \( P(-1.75 \leq Z \leq -1.25) \) using the standard normal distribution table or calculator: - \( P(Z \leq -1.75) \approx 0.0401 \) - \( P(Z \leq -1.25) \approx 0.1056 \) To find \( P(-1.75 \leq Z \leq -1.25) \): \[ P(-1.75 \leq Z \leq -1.25) = P(Z \leq -1.25) - P(Z \leq -1.75) = 0.1056 - 0.0401 = 0.0655 \] Rounding to four decimal places gives us \( 0.0656 \). So the final answer is \( \boxed{0.0656} \).

preguntas relacionadas

Question 12(Mulliple Choice Warth 5 points) \[ (04.06 \mathrm{HC}) \] A researcher wants to test the claim that the proportion of juniors who watch television regularly is greater than the proportion of seniors who watch television regularly She finds that 56 of 70 randomly selected juniors and 47 of 85 randomly selected seniors report watching television regularly. Construct \( 95 \% \) confidence intervals for each population proportion. Which of the statemente gives the correct outcome of the research or's tert of the dalim? The \( 95 \% \) confidence interval for juniors is (706, 894), and the \( 95 \% \) confidence interval for seniors is ( 447,659 ). Since the intervals overlap, there is not enough evidence to say the proportion of juniors who watch television regularly may be higher than that of seniors. The \( 95 \% \) confidence interval for juniors is (721, 879), and the \( 95 \% \) confidence interval for seniors is (464, 642). Since the interval for juniors is higher than the interval for seniors, there is evidence to say the proportion of juniors who watch television regularly may be higher than that of seniors. The \( 95 \% \) confidence interval for juniors is ( 706,894 ), and the \( 95 \% \) confidence interval for seniors is ( 447,659 ). Since the interval for juniors is higher than the interval for seniors, there is evidence to say the proportion of juniors who watch television regularly may be higher than that of seniors. The \( 95 \% \) confidence interval for juniors is ( \( 721, .879 \) ), and the \( 95 \% \) confidence interval for seniors is (464, 642). Since the intervals overlap, there is not enough evidence to say the proportion of juniors who watch television regularly may be higher than that of seniors.

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad