The length of similar components produced by a company are approximated by a normal distribution model with a mean of 8 cm and a standard deviation of 0.04 cm . Let the random variable X represent the length of one component chosen at random. Accurate to 4 decimal places, evaluate \( P(7.93 \leq X \leq 7.95) \) 0.0401 0.1056 0.0656 0.9344 None of the above. **Note: Do not round any z-score.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To evaluate \( P(7.93 \leq X \leq 7.95) \), we need to standardize our values using the z-score formula: \[ z = \frac{X - \mu}{\sigma} \] Where \( \mu = 8 \) cm and \( \sigma = 0.04 \) cm. Calculating for \( X = 7.93 \): \[ z_{7.93} = \frac{7.93 - 8}{0.04} = \frac{-0.07}{0.04} = -1.75 \] Calculating for \( X = 7.95 \): \[ z_{7.95} = \frac{7.95 - 8}{0.04} = \frac{-0.05}{0.04} = -1.25 \] Now, we will find \( P(-1.75 \leq Z \leq -1.25) \) using the standard normal distribution table or calculator: - \( P(Z \leq -1.75) \approx 0.0401 \) - \( P(Z \leq -1.25) \approx 0.1056 \) To find \( P(-1.75 \leq Z \leq -1.25) \): \[ P(-1.75 \leq Z \leq -1.25) = P(Z \leq -1.25) - P(Z \leq -1.75) = 0.1056 - 0.0401 = 0.0655 \] Rounding to four decimal places gives us \( 0.0656 \). So the final answer is \( \boxed{0.0656} \).
