Pregunta
upstudy study bank question image url

The lengths of pregnancies are normally distributed with a mean of 270 days and a standard deviation of 15 days. a. Find the probability of a pregnancy lasting 309 days or longer. b. If the length of pregnancy is in the lowest \( 2 \% \), then the baby is premature. Find the length that separates premature babies from those who are not premature. Click to view page 1 of the table. Click to view page 2 of the table. a. The probability that a pregnancy will last 309 days or longer is (Round to four decimal places as needed.)

Ask by Griffin West. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. The probability of a pregnancy lasting 309 days or longer is approximately 0.0047. b. Premature babies are those with pregnancies lasting 239 days or shorter.

Solución

We are given that pregnancy lengths are normally distributed with a mean (μ) of 270 days and a standard deviation (σ) of 15 days. Step 1. Write the transformation to the standard normal variable (Z):   Z = (X – μ) / σ ──────────────────────────── Part (a): Find the probability of a pregnancy lasting 309 days or longer. 1. Calculate the Z-score for X = 309:   Z = (309 – 270) / 15 = 39 / 15 = 2.6 2. We need P(X ≥ 309) = P(Z ≥ 2.6). 3. Using the standard normal table (or a calculator), find P(Z < 2.6). Typically,   P(Z < 2.6) ≈ 0.9953 4. Therefore, P(Z ≥ 2.6) = 1 – 0.9953 = 0.0047 So, the probability that a pregnancy lasts 309 days or longer is approximately 0.0047 (rounded to four decimal places). ──────────────────────────── Part (b): Find the length of pregnancy that is in the lowest 2% (i.e., P(X ≤ x) = 0.02). 1. Look up (or use an inverse normal calculator for) the Z-value (z₀) corresponding to a cumulative probability of 0.02.   Typically, z₀ ≈ –2.054 2. Convert this Z-score back to the original units using:   x = μ + z₀ * σ   x = 270 + (–2.054 * 15)   x = 270 – 30.81   x ≈ 239.19 Rounded appropriately, the cutoff length is about 239 days. ──────────────────────────── Final Answers: a. The probability that a pregnancy will last 309 days or longer is approximately 0.0047. b. The length that separates premature babies (lowest 2%) from those who are not premature is approximately 239 days.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve part (a), we start by calculating the z-score for a pregnancy lasting 309 days. The formula for the z-score is: \[ z = \frac{(X - \mu)}{\sigma} \] where \( X \) is the value of interest (309 days), \( \mu \) is the mean (270 days), and \( \sigma \) is the standard deviation (15 days). Plugging in the values: \[ z = \frac{(309 - 270)}{15} = \frac{39}{15} = 2.6 \] Next, we look up the z-score of 2.6 in the standard normal distribution table (or use a calculator) to find the cumulative probability. This tells us the probability of a pregnancy lasting less than 309 days: Cumulative probability for \( z = 2.6 \) is approximately 0.9953. To find the probability of a pregnancy lasting 309 days or longer, we subtract this value from 1: \[ P(X \geq 309) = 1 - P(Z < 2.6) = 1 - 0.9953 = 0.0047 \] So, the probability that a pregnancy will last 309 days or longer is approximately **0.0047** (rounded to four decimal places). Now, for part (b), to find the length that separates the lowest 2% of pregnancies, we need to find the z-score that corresponds to the 2nd percentile, which is approximately -2.05 (from the z-table). Using the z-score formula rearranged: \[ X = \mu + z \sigma \] We plug in the values: \[ X = 270 + (-2.05)(15) \] \[ X = 270 - 30.75 \] \[ X = 239.25 \] Thus, the length that separates premature babies from those who are not premature is approximately **239.25 days**. If you have any questions or need further assistance, feel free to ask!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad