Pregunta
upstudy study bank question image url

A lift of mass 16000 kg is connected to a rope that passes over a drum of 4 m diameter, and a balance mass of 6000 kg is attached to the other end of the rope. The drum has a mass of 1250 kg and a radius of gyration of 450 mm , and is driven through a \( 32: 1 \) reduction gear by a motor with an efficiency of \( 85 \% \). The rotating parts of the motor have a mass of 110 kg and a radius of gyration of 125 mm . The frictional torque in the motor is 30 Nm . Calculate the motor torque for an upward lift acceleration of \( 0,2 \mathrm{~m} / \mathrm{s}^{2} \). Please draw the free body diagram for you to understand the instruction.

Ask by Robbins Santiago. in South Africa
Nov 15,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The motor torque required for the upward lift acceleration of \( 0.2 \, \text{m/s}^2 \) is \( 10040 \, \text{Nm} \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To calculate the motor torque needed for the upward lift acceleration, we shall use the information provided about the lift, the counterbalance mass, and the dynamic forces involved. First, we need to determine the net force acting on the lift. The gravitational force acting on the lift is given by: \[ F_g = m_{\text{lift}} \cdot g = 16000 \, \text{kg} \cdot 9.81 \, \text{m/s}^2 = 156960 \, \text{N} \] The gravitational force acting on the counterbalance weight is: \[ F_{\text{counter}} = m_{\text{counter}} \cdot g = 6000 \, \text{kg} \cdot 9.81 \, \text{m/s}^2 = 58860 \, \text{N} \] The net force required to accelerate the lift upwards at \(0.2 \, \text{m/s}^2\) can be calculated using Newton's second law (\(F = m \cdot a\)): \[ F_{\text{net}} = m_{\text{lift}} \cdot a = 16000 \, \text{kg} \cdot 0.2 \, \text{m/s}^2 = 3200 \, \text{N} \] Now, to find the total upward force exerted by the motor, we needs to account for both the weight of the lift and the required net force for acceleration: \[ F_{\text{motor}} = F_g - F_{\text{counter}} + F_{\text{net}} \] \[ F_{\text{motor}} = 156960 \, \text{N} - 58860 \, \text{N} + 3200 \, \text{N} = 97900 \, \text{N} \] Next, we must convert this force to torque at the drum: The torque can be calculated as: \[ \tau_{\text{drum}} = F_{\text{motor}} \cdot r_{\text{drum}} = F_{\text{motor}} \cdot \left(\frac{d_{\text{drum}}}{2}\right) = 97900 \, \text{N} \cdot 2 \, \text{m} = 195800 \, \text{Nm} \] Considering the gear reduction of \(32:1\), we can calculate the motor torque: \[ \tau_{\text{motor}} = \tau_{\text{drum}} \cdot \text{Reduction Ratio} \] \[ \tau_{\text{motor}} = \frac{195800 \, \text{Nm}}{32} \approx 6125 \, \text{Nm} \] Finally, we must also account for the frictional torque experienced in the motor. The total motor torque needed is: \[ \tau_{\text{total motor}} = \tau_{\text{motor}} + \text{Friction Torque} = 6125 \, \text{Nm} + 30 \, \text{Nm} = 6155 \, \text{Nm} \] Thus, the required motor torque for an upward lift acceleration of \(0.2 \, \text{m/s}^2\) is approximately **6155 Nm**.

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad