Pregunta
upstudy study bank question image url

Part 1 of 2 Points: 0 of 1 Save A certain virus infects one in every 300 people. A test used to detect the virus in a person is positive \( 80 \% \) of the time when the person has the virus and \( 15 \% \) of the time when the person does not have the virus. (This \( 15 \% \) result is called a false positive.) Let A be the event "the person is infected" and B be the event "the person tests positive." (a) Using Bayes' Theorem, when a person tests positive, determine the probability that the person is infected. (b) Using Bayes' Theorem, when a person tests negative, determine the probability that the person is not infected. (i) Click the icon to the right to review Bayes' Theorem. (a) The probability that a person is infected when a person tests positive is \( \square \) (Do not round until final answer. Then round to three decimal places as needed.)

Ask by Valdez Carroll. in the United States
Feb 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability that a person is infected when they test positive is 0.018.

Solución

Let A be the event “person is infected” and B be “person tests positive.” We are given:   P(A) = 1/300   P(Aᶜ) = 299/300   P(B|A) = 0.80     (true positive rate)   P(B|Aᶜ) = 0.15     (false positive rate) We want to find P(A|B), the probability a person is infected given that they test positive. By Bayes’ Theorem:   P(A|B) = [P(B|A) × P(A)] / P(B) where P(B) is computed by the law of total probability:   P(B) = P(B|A)P(A) + P(B|Aᶜ)P(Aᶜ)   = 0.80×(1/300) + 0.15×(299/300) Calculate the numerator:   Numerator = 0.80/300 ≈ 0.002667 Calculate the denominator:   Denom = 0.80/300 + (0.15×299)/300       = (0.80 + 44.85)/300       = 45.65/300 ≈ 0.152167 Now, applying Bayes’ Theorem:   P(A|B) = (0.002667) / (0.152167) ≈ 0.0175 Rounded to three decimal places, the probability is 0.018. Thus, the probability that a person is infected when they test positive is 0.018.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the probability that a person is infected given a positive test result (P(A | B)), we can use Bayes' Theorem: \[ P(A | B) = \frac{P(B | A) \cdot P(A)}{P(B)} \] Where: - P(A) is the prior probability that a person is infected (1 in 300). - P(B | A) is the probability of testing positive if the person is infected (80%). - P(B) is the overall probability of testing positive, which can be calculated using the law of total probability. **Step 1: Calculate the probabilities** 1. **P(A)**: The probability of being infected is: \[ P(A) = \frac{1}{300} \approx 0.00333 \] 2. **P(B | A)**: The probability of testing positive given the person is infected is: \[ P(B | A) = 0.8 \] 3. **P(B | A')**: The probability of testing positive given that the person is not infected. The probability of not being infected (A') is: \[ P(A') = 1 - P(A) = 1 - \frac{1}{300} \approx 0.99667 \] Thus, the probability of testing positive when not infected (false positive) is: \[ P(B | A') = 0.15 \] 4. **P(B)**: We can calculate P(B) using the law of total probability: \[ P(B) = P(B | A) \cdot P(A) + P(B | A') \cdot P(A') \] \[ P(B) = (0.8 \cdot 0.00333) + (0.15 \cdot 0.99667) \] \[ P(B) \approx 0.002664 + 0.1495 \approx 0.152164 \] **Step 2: Substitute into Bayes' Theorem** Now we can find P(A | B): \[ P(A | B) = \frac{P(B | A) \cdot P(A)}{P(B)} = \frac{0.8 \cdot 0.00333}{0.152164} \approx \frac{0.002664}{0.152164} \approx 0.0175 \] Thus, rounding to three decimal places, the probability that a person is infected when they test positive is: \[ \boxed{0.018} \] --- For part (b), now we want to find the probability that a person is NOT infected given a negative test result (P(A' | B')). Again, we can apply Bayes' Theorem: \[ P(A' | B') = \frac{P(B' | A') \cdot P(A')}{P(B')} \] Where: - P(B' | A') is the probability of testing negative if the person is not infected, which is 1 - P(B | A') = 1 - 0.15 = 0.85. - P(B') is the overall probability of testing negative, which we can calculate similarly. **Step 1: Calculate P(B')** Using \[ P(B') = P(B' | A) \cdot P(A) + P(B' | A') \cdot P(A') \] And knowing P(B' | A) = 1 - P(B | A) = 0.2: \[ P(B') = (0.2 \cdot 0.00333) + (0.85 \cdot 0.99667) \] \[ P(B') \approx 0.000666 + 0.847195 \approx 0.847861 \] **Step 2: Substitute into Bayes' Theorem** Now we can find P(A' | B'): \[ P(A' | B') = \frac{P(B' | A') \cdot P(A')}{P(B')} = \frac{0.85 \cdot 0.99667}{0.847861} \approx \frac{0.848169}{0.847861} \approx 1.0003 \] So the probability that a person is not infected when they test negative (rounded to three decimal places) is: \[ \boxed{1.000} \] It suggests that there’s a very high probability they'll be not infected if they test negative, matching with our intuition given the effectiveness of the test in this scenario!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad