Pregunta
upstudy study bank question image url

(c) The flow of solution into the vat is stopped, and the solution is drained. The depth of solution in the vat is modeled by the function \( h \) that satisfies the differential equation \( \frac{d h}{d t}=-k \sqrt{h} \), where \( h(t) \) is measured in meters, \( t \) is the number of minutes since draining began, and \( k \) is a constant. If the depth of the solution is 16 meters at time \( t=0 \) minutes and 4 meters at time \( t=30 \) minutes, what is \( h(t) \) in terms of \( t \) ?

Ask by Dawson Howell. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( h(t) = \left( \frac{8 - \frac{2}{15}t}{2} \right)^2 \)

Solución

We begin with the differential equation   dh/dt = –k√h. Step 1. Separate the variables h and t:   dh/√h = –k dt. Step 2. Integrate both sides:   ∫ h^(–1/2) dh = –k ∫ dt. The integral of h^(–1/2) is 2√h, so we have   2√h = –kt + C. Step 3. Apply the initial condition h(0) = 16:   2√16 = –k(0) + C ⟹ 2∙4 = C ⟹ C = 8. Thus, the equation becomes   2√h = –kt + 8   (1) Step 4. Use the condition h(30) = 4 to find k:   2√4 = –k(30) + 8 ⟹ 2∙2 = –30k + 8 ⟹ 4 = –30k + 8. Solve for k:   –30k = 4 – 8 ⟹ –30k = –4 ⟹ k = 4/30 = 2/15. Step 5. Substitute k back into equation (1):   2√h = –(2/15)t + 8. Solve for √h:   √h = (8 – (2/15)t)/2. Now, square both sides to find h:   h(t) = [(8 – (2/15)t)/2]². This is the function h(t) that models the depth of the solution in the vat as a function of time t (in minutes).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the differential equation \(\frac{d h}{d t} = -k \sqrt{h}\), we can separate the variables and integrate. Rewriting it gives: \[ \frac{1}{\sqrt{h}} dh = -k dt. \] Integrating both sides yields: \[ 2\sqrt{h} = -kt + C, \] where \(C\) is the constant of integration. Squaring both sides leads us to: \[ h = \left(-\frac{kt}{2} + \frac{C}{2}\right)^2. \] At \(t=0\), it's given that \(h(0) = 16\), so: \[ 16 = \left(\frac{C}{2}\right)^2 \implies C = 8. \] Thus, we have: \[ h = \left(-\frac{kt}{2} + 4\right)^2. \] Next, we can use the second condition \(h(30)=4\): \[ 4 = \left(-\frac{30k}{2} + 4\right)^2 \implies 2 = -15k + 4. \] Solving for \(k\): \[ -15k = -2 \implies k = \frac{2}{15}. \] Now substituting \(k\) back in gives: \[ h(t) = \left(-\frac{t}{15} + 4\right)^2. \] Ultimately, the function describing the depth of solution in the vat is: \[ h(t) = \left(4 - \frac{t}{15}\right)^2. \] This is the depth of the solution over time!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad