Pregunta
upstudy study bank question image url

entraintint ineorem Part 2 of 3 score: \( 56.25 \%, 4.5 \) of 8 points Points: 0 of 1 Save The height of women ages \( 20-29 \) is normally distributed, with a mean of 64.3 inches. Assume \( \sigma=2.7 \) inches. Are you more likely to randomly select 1 wornan with a height less than 65.8 inches or are you more likely to select a sample of 21 women with a mean height less than 65.8 inches? Explain. Click the icon to view page 1 of the standard normal table. Click the icon to view page 2 of the standard normal table. What is the probability of randomly selecting 1 woman with a height less than 65.8 inches? 0.7123 (Round to four decimal places as needed.) What is the probability of selecting a sample of 21 women with a mean height less than 65.8 inches? (Round to four decimal places as needed.)

Ask by Edwards Ross. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability of selecting 1 woman with a height less than 65.8 inches is 0.7123. The probability of selecting a sample of 21 women with a mean height less than 65.8 inches is approximately 0.9945. Therefore, it is more likely to select a sample of 21 women with a mean height less than 65.8 inches than to select 1 woman with a height less than 65.8 inches.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

The Deep Dive

To determine whether you are more likely to select either a single woman or a sample of 21 women with a mean height less than 65.8 inches, you'll calculate the probability for both scenarios. For a single woman, you've already calculated that the probability \( P(X < 65.8) \) is approximately \( 0.7123 \). Now, for the sample of 21 women, you need to use the Central Limit Theorem, which states that the sampling distribution of the sample mean will also be normally distributed. The mean remains \( \mu = 64.3 \), but the standard deviation (standard error) must be adjusted for the sample size. The standard error \( \sigma_{\bar{x}} \) is calculated as: \[ \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{2.7}{\sqrt{21}} \approx 0.5885. \] Next, you will standardize the sample mean using the z-score formula: \[ z = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} = \frac{65.8 - 64.3}{0.5885} \approx 2.54. \] Now, you can look up \( z = 2.54 \) in the standard normal table, which gives you a probability \( P(Z < 2.54) \). This is approximately \( 0.9945 \). So, you're more likely to select a sample of 21 women with a mean height less than 65.8 inches, with a probability of \( 0.9945 \). 1. Probability of selecting a single woman with height less than 65.8 inches: \( 0.7123 \) 2. Probability of selecting a sample of 21 women with a mean height less than 65.8 inches: \( 0.9945 \)

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad