5. The exponential function \( f(x) \) passes through the points \( (0,150) \) and \( (1,90) \). (3) Find a formula. Show work. Your formula should begin with " \( y= \) ".
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find the formula for the exponential function \( f(x) = ab^x \) that passes through the points \( (0, 150) \) and \( (1, 90) \), we can use these points to set up equations. 1. From the point \( (0, 150) \), we substitute into the equation: \[ f(0) = ab^0 = a = 150. \] 2. Substituting the point \( (1, 90) \): \[ f(1) = ab^1 = 150b = 90. \] To find \( b \), we solve for \( b \): \[ b = \frac{90}{150} = \frac{3}{5}. \] So, we have \( a = 150 \) and \( b = \frac{3}{5} \). Finally, the formula is: \[ y = 150 \left( \frac{3}{5} \right)^x. \]
