Pregunta
upstudy study bank question image url

Find the magnitude and direction of each vector. Leave magnitude as a simplified radical. Round direction to the nearest tenth of a degree. \( \vec{g}=\langle 9,-7\rangle \)

Ask by Erickson Williams. in the United States
Feb 12,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The magnitude of vector \( \vec{g} = \langle 9, -7 \rangle \) is \( \sqrt{130} \) and the direction is approximately \( -37.9^\circ \).

Solución

To find the magnitude and direction of the vector \( \vec{g} = \langle 9, -7 \rangle \), we can use the following steps: 1. Calculate the magnitude of the vector using the formula \( \text{Magnitude} = \sqrt{x^2 + y^2} \). 2. Calculate the direction of the vector using the formula \( \text{Direction} = \tan^{-1}\left(\frac{y}{x}\right) \). Let's calculate the magnitude and direction of the vector \( \vec{g} = \langle 9, -7 \rangle \): 1. Calculate the magnitude: \[ \text{Magnitude} = \sqrt{9^2 + (-7)^2} = \sqrt{81 + 49} = \sqrt{130} \] 2. Calculate the direction: \[ \text{Direction} = \tan^{-1}\left(\frac{-7}{9}\right) \] Now, let's calculate the direction in degrees and round it to the nearest tenth of a degree. Calculate the value by following steps: - step0: Calculate: \(\sqrt{130}\) Calculate or simplify the expression \( \tan^{-1}(-7/9) \). Calculate the value by following steps: - step0: Calculate: \(\arctan\left(\frac{-7}{9}\right)\) - step1: Rewrite the fraction: \(\arctan\left(-\frac{7}{9}\right)\) The magnitude of the vector \( \vec{g} = \langle 9, -7 \rangle \) is approximately \( 11.401754 \) and the direction is approximately \( -0.661043 \) radians. To convert the direction from radians to degrees, we can use the conversion factor \( 1 \text{ radian} = \frac{180}{\pi} \text{ degrees} \). \[ \text{Direction in degrees} = -0.661043 \times \frac{180}{\pi} \] Let's calculate the direction in degrees. Calculate the value by following steps: - step0: Calculate: \(-0.661043\times \frac{180}{\pi }\) - step1: Convert the expressions: \(-\frac{661043}{1000000}\times \frac{180}{\pi }\) - step2: Multiply the numbers: \(-\frac{5949387}{50000\pi }\) The direction of the vector \( \vec{g} = \langle 9, -7 \rangle \) in degrees is approximately \( -37.874974 \) degrees. Therefore, the magnitude of the vector \( \vec{g} \) is approximately \( 11.401754 \) and the direction is approximately \( -37.874974 \) degrees.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the magnitude of the vector \(\vec{g} = \langle 9, -7 \rangle\), we use the formula for the magnitude of a vector, which is \(\sqrt{x^2 + y^2}\). Calculating this, we get: \[ \text{Magnitude} = \sqrt{9^2 + (-7)^2} = \sqrt{81 + 49} = \sqrt{130} \] Thus, the magnitude is \(\sqrt{130}\). Now, for the direction (angle \(\theta\)), we use the tangent function: \[ \tan(\theta) = \frac{y}{x} = \frac{-7}{9} \] To find \(\theta\), we compute the arctangent: \[ \theta = \tan^{-1}\left(-\frac{7}{9}\right) \] Calculating this gives: \[ \theta \approx -38.7^\circ \] Since the vector lies in the fourth quadrant, we can find the positive angle by adding \(360^\circ\): \[ \theta \approx 360^\circ - 38.7^\circ \approx 321.3^\circ \] So, the magnitude of \(\vec{g}\) is \(\sqrt{130}\) and the direction is approximately \(321.3^\circ\). When it comes to vectors, historical figures like Galilei and Newton set the stage for understanding motion through vector analysis. While some explorers once risked their lives traversing uncharted territories without precise direction, today, we can navigate easily with vector calculus, showcasing the strides made in knowledge! In practical situations, combining vectors can lead to common mistakes, such as forgetting to consider the signs of the components. Always remember to revert back to your coordinate system: the direction you choose affects both angle and resultant vector significantly, especially in navigation or physics contexts!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad