SEP Use Mathematics \( A \) wire with a length of 3.0 m and a cross- sectional area of \( 0.0020 \mathrm{~m}^{2} \) is stretched 0.10 cm by a \( 98-\mathrm{kg} \) hanging weight. Determine Young's modulus for the wire.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find Young's modulus (E) for the wire, we can use the formula: \[ E = \frac{\text{stress}}{\text{strain}} \] First, calculate the stress (force per unit area) applied to the wire. The force (F) is equal to the weight of the hanging object: \[ F = mg = 98 \, \text{kg} \times 9.81 \, \text{m/s}^2 = 962.58 \, \text{N} \] Now, stress is defined as force divided by the cross-sectional area (A): \[ \text{Stress} = \frac{F}{A} = \frac{962.58 \, \text{N}}{0.0020 \, \text{m}^2} = 481290 \, \text{N/m}^2 \] Next, we need to calculate strain, which is the change in length (ΔL) divided by the original length (L): \[ \Delta L = 0.10 \, \text{cm} = 0.0010 \, \text{m} \] \[ \text{Strain} = \frac{\Delta L}{L} = \frac{0.0010 \, \text{m}}{3.0 \, \text{m}} \approx 0.000333 \] Now we can plug the stress and strain back into the formula for Young's modulus: \[ E = \frac{481290 \, \text{N/m}^2}{0.000333} \approx 1.44 \times 10^6 \, \text{N/m}^2 \] So, Young's modulus for the wire is approximately \( 1.44 \times 10^6 \, \text{Pa} \).
