Pregunta
upstudy study bank question image url

\( \int^{f}(x)=\tan (x) \) vs \( g(x)=2 \tan (x) \) vs \( h(x)=\tan (2 x) \)

Ask by Mcguire Cook. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( f(x) = \tan(x) \), \( g(x) = 2 \tan(x) \), and \( h(x) = \tan(2x) \) are related by vertical scaling and horizontal compression. Their derivatives show how steeply each function increases, with \( g(x) \) increasing the fastest.

Solución

To analyze the functions \( f(x) = \tan(x) \), \( g(x) = 2 \tan(x) \), and \( h(x) = \tan(2x) \), we will look at their properties, including their derivatives, and how they relate to each other. ### Step 1: Derivatives of the Functions 1. **For \( f(x) = \tan(x) \)**: - The derivative is given by: \[ f'(x) = \sec^2(x) \] 2. **For \( g(x) = 2 \tan(x) \)**: - The derivative is: \[ g'(x) = 2 \sec^2(x) \] 3. **For \( h(x) = \tan(2x) \)**: - Using the chain rule, the derivative is: \[ h'(x) = 2 \sec^2(2x) \] ### Step 2: Summary of Derivatives - \( f'(x) = \sec^2(x) \) - \( g'(x) = 2 \sec^2(x) \) - \( h'(x) = 2 \sec^2(2x) \) ### Step 3: Comparison of the Functions - **Function \( g(x) \)** is simply a vertical stretch of \( f(x) \) by a factor of 2. This means that for every \( x \), \( g(x) \) will be twice the value of \( f(x) \). - **Function \( h(x) \)** represents a horizontal compression of \( f(x) \) by a factor of 2. This means that the function \( h(x) \) will reach its values faster than \( f(x) \). ### Step 4: Behavior of the Functions - **Asymptotes**: - \( f(x) \) has vertical asymptotes at \( x = \frac{\pi}{2} + n\pi \) for \( n \in \mathbb{Z} \). - \( g(x) \) will have the same vertical asymptotes as \( f(x) \) since it is just a scaled version. - \( h(x) \) will have vertical asymptotes at \( x = \frac{\pi}{4} + \frac{n\pi}{2} \) for \( n \in \mathbb{Z} \) due to the factor of 2 in the argument. ### Conclusion - The functions \( f(x) \) and \( g(x) \) are related by a vertical scaling, while \( h(x) \) is related to \( f(x) \) by a horizontal compression. - The derivatives indicate how steeply each function increases, with \( g(x) \) increasing the fastest due to its scaling factor. If you need further analysis or specific calculations, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The integral of the function \( \tan(x) \) leads you to discover the fascinating interplay between trigonometric identities and calculus. When you integrate \( \tan(x) \), you actually unlock a magical relationship with logarithmic functions: \( \int \tan(x) \, dx = -\ln|\cos(x)| + C \). This reveals how trigonometric functions can spiral into the world of logarithms. Now, if we switch gears to \( g(x) = 2 \tan(x) \) and \( h(x) = \tan(2x) \), things get even wilder! The function \( g(x) \) just scales the classic tangent function by 2, which means its amplitude doubles and the vertical asymptotes remain the same. Meanwhile, \( h(x) \) leverages the double angle formula, \( \tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)} \), showcasing how angles can create thrilling transformations in their outputs. Dive into these transformations and you’ll find a vibrant world of trigonometry and calculus at your fingertips!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad