Pregunta
Let \( f(x)=\sqrt{3 x^{2}+4 x+3} \) \( f^{\prime}(x)= \) \( f^{\prime}(2)= \)
Ask by Coles Lang. in the United States
Feb 24,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( f'(x) = \frac{6x + 4}{2\sqrt{3x^2 + 4x + 3}} \)
\( f'(2) = \frac{8}{\sqrt{23}} \)
Solución
We are given the function f(x) = √(3x² + 4x + 3). To find f '(x), we'll first rewrite the function as:
f(x) = (3x² + 4x + 3)^(1/2).
Using the chain rule, the derivative is:
f '(x) = (1/2)(3x² + 4x + 3)^(-1/2) · (6x + 4)
= (6x + 4) / [2√(3x² + 4x + 3)].
Now, to evaluate f '(2), substitute x = 2:
Numerator: 6(2) + 4 = 12 + 4 = 16.
Denominator: 2√(3(2)² + 4(2) + 3) = 2√(12 + 8 + 3) = 2√23.
Thus, we have:
f '(2) = 16 / (2√23) = 8 / √23.
So the answers are:
f '(x) = (6x + 4) / [2√(3x² + 4x + 3)]
f '(2) = 8 / √23.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
To find \( f'(x) \) for the function \( f(x) = \sqrt{3x^2 + 4x + 3} \), we first apply the chain rule. The derivative of \( f(x) \) is given by: \[ f'(x) = \frac{1}{2\sqrt{3x^2 + 4x + 3}} \cdot (6x + 4) \] Now, we simplify this expression: \[ f'(x) = \frac{6x + 4}{2\sqrt{3x^2 + 4x + 3}} = \frac{3x + 2}{\sqrt{3x^2 + 4x + 3}} \] Next, to find \( f'(2) \), we substitute \( x = 2 \): \[ f'(2) = \frac{3(2) + 2}{\sqrt{3(2)^2 + 4(2) + 3}} = \frac{6 + 2}{\sqrt{12 + 8 + 3}} = \frac{8}{\sqrt{23}} \] Thus, \[ f'(2) = \frac{8}{\sqrt{23}} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium