Pregunta

Calculate the volume of the solid formed by rotating the region bounded by the curve \( y = x^2 \) and the line \( y = 1 \) around the x-axis using the washer method.

Ask by Schwartz Carroll. in Nigeria
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The volume of the solid is \( \frac{8\pi}{5} \) cubic units.

Solución

To solve the problem using the washer method, follow these steps: 1. Identify the region bounded by the curves: • The curve: y = x² • The line: y = 1 2. Find the intersection points of the curves by setting x² = 1:   x² = 1 ⟹ x = ±1 3. When you rotate the region about the x-axis, each vertical slice at a position x becomes a washer (a disk with a hole). The outer radius of the washer is the distance from the x-axis to the line y = 1, and the inner radius is the distance from the x-axis to the curve y = x². • Outer radius, R: The distance from the x-axis to y = 1 is constant, so R = 1. • Inner radius, r: The distance from the x-axis to y = x² is r = x². 4. The area A(x) of a washer is given by:   A(x) = π[R² - r²]   A(x) = π[1² - (x²)²] = π[1 - x⁴] 5. To get the volume, integrate A(x) with respect to x between the limits x = -1 and x = 1:   V = ∫₋₁¹ A(x) dx = π∫₋₁¹ (1 - x⁴) dx 6. Notice that the integrand (1 - x⁴) is an even function, since x⁴ is even. Therefore, you can simplify the integration by evaluating it from 0 to 1 and doubling the result:   V = 2π∫₀¹ (1 - x⁴) dx 7. Compute the integral:   ∫₀¹ (1 - x⁴) dx = [x - (x⁵/5)] evaluated from 0 to 1   = (1 - 1/5) - (0 - 0) = 1 - 1/5 = 4/5 8. Multiply by 2π:   V = 2π * (4/5) = 8π/5 Thus, the volume of the solid formed by rotating the region about the x-axis is (8π)/5 cubic units.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the volume of the solid formed by rotating the region bounded by the curve \( y = x^2 \) and the line \( y = 1 \) around the x-axis using the washer method, we first need to determine the points of intersection between the curve and the line. Setting \( x^2 = 1 \), we have: \[ x^2 = 1 \implies x = \pm 1 \] This indicates that the region of interest in the x-axis is from \( x = -1 \) to \( x = 1 \). The formula for the volume \( V \) of a solid of revolution using the washer method is given by: \[ V = \pi \int_a^b \left( R(x)^2 - r(x)^2 \right) dx \] where \( R(x) \) is the outer radius and \( r(x) \) is the inner radius. In this case: - The outer radius \( R(x) \) is the line \( y = 1 \). - The inner radius \( r(x) \) is the curve \( y = x^2 \). Thus, we have: \[ R(x) = 1, \quad r(x) = x^2 \] Now we substitute these into the volume formula: \[ V = \pi \int_{-1}^{1} \left( (1)^2 - (x^2)^2 \right) dx \] This simplifies to: \[ V = \pi \int_{-1}^{1} \left( 1 - x^4 \right) dx \] Now we can compute the integral: \[ V = \pi \left[ \int_{-1}^{1} 1 \, dx - \int_{-1}^{1} x^4 \, dx \right] \] Calculating the first integral: \[ \int_{-1}^{1} 1 \, dx = 2 \] Now calculating the second integral: \[ \int_{-1}^{1} x^4 \, dx = 2 \int_{0}^{1} x^4 \, dx = 2 \left[ \frac{x^5}{5} \right]_{0}^{1} = 2 \cdot \frac{1}{5} = \frac{2}{5} \] Putting everything together: \[ V = \pi \left( 2 - \frac{2}{5} \right) = \pi \left( \frac{10}{5} - \frac{2}{5} \right) = \pi \left( \frac{8}{5} \right) \] Thus, the final volume of the solid is: \[ V = \frac{8\pi}{5} \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad