Pregunta
upstudy study bank question image url

Alecia wants \( \$ 7,000 \) saved in 4 years to make a down payment on a house. How much money should she invest now at \( 6.1 \% \) compounded annually in order to meet her goal? Round value to the nearest cent.

Ask by Fowler Schmidt. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Alecia should invest approximately $5,523.78 now at 6.1% compounded annually to save $7,000 in 4 years.

Solución

To solve this problem, we can use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{n} \right)^{nt} \] where: - \( A \) is the amount of money Alecia wants to save (in this case, $7,000), - \( P \) is the principal amount (the amount of money Alecia invests now), - \( r \) is the annual interest rate (in decimal form, so 6.1% becomes 0.061), - \( n \) is the number of times the interest is compounded per year (in this case, 1 since it's compounded annually), - \( t \) is the time in years (in this case, 4 years). We need to solve for \( P \) to find out how much money Alecia should invest now to meet her goal. Let's substitute the given values into the formula and solve for \( P \). Solve the equation by following steps: - step0: Solve for \(P\): \(7000=P\left(1+0.061\right)^{4}\) - step1: Simplify: \(7000=\frac{1061^{4}}{1000^{4}}\times P\) - step2: Swap the sides: \(\frac{1061^{4}}{1000^{4}}\times P=7000\) - step3: Rewrite the expression: \(\frac{1061^{4}P}{1000^{4}}=7000\) - step4: Cross multiply: \(1061^{4}P=1000^{4}\times 7000\) - step5: Simplify the equation: \(1061^{4}P=7000\times 1000^{4}\) - step6: Divide both sides: \(\frac{1061^{4}P}{1061^{4}}=\frac{7000\times 1000^{4}}{1061^{4}}\) - step7: Divide the numbers: \(P=\frac{7000\times 1000^{4}}{1061^{4}}\) The solution to the equation is \( P = \frac{7000 \times 1000^4}{1061^4} \). Now, we can calculate the value of \( P \) to find out how much money Alecia should invest now to meet her goal. Calculate the value by following steps: - step0: Calculate: \(\frac{7000\times 1000^{4}}{1061^{4}}\) Alecia should invest approximately $5,523.78 now at 6.1% compounded annually to meet her goal of saving $7,000 in 4 years.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find out how much Alecia needs to invest now, we can use the present value formula for compound interest, which is given by: \[ PV = \frac{FV}{(1 + r)^t} \] Where: - \( PV \) = present value (the amount Alecia needs to invest now) - \( FV \) = future value (\$7,000) - \( r \) = annual interest rate (0.061) - \( t \) = number of years (4) Plugging in the numbers: \[ PV = \frac{7000}{(1 + 0.061)^4} \] Calculating \( (1.061)^4 \): \[ (1.061)^4 \approx 1.270678 \] Now, we substitute back into the formula: \[ PV = \frac{7000}{1.270678} \approx 5503.11 \] Thus, Alecia should invest approximately **\$5,503.11** now to meet her goal of \$7,000 in 4 years.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad