Pregunta
upstudy study bank question image url

SECTIONA QUESTION 1 1. SIGNIFICANCE OF QUADRATIC FORMULA The quadratic formula defines the points ( \( x, 0 \) ) on the parabolic graph, where the parabola \( y^{\prime \prime}=a x^{2}+b x+c \) crosses the \( x \)-axis and it can be separated into two terms. The quadratics formula is: \( x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \) or \( x=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \) 1.1. The first term \( \frac{-b}{2 a} \) describes the (i) \( \qquad \) , the second term \( \frac{\sqrt{b^{2}-4 a c}}{2 a} \) gives the (ii) \( \qquad \) if the parabola's vertex is on the \( x \) axis, then the corresponding equation has a single repeated root the line of symmetry and this distance term is zero, algebraically the (iii) \( \qquad \) . commonly known as \( b^{2}-4 a c=0 \). (3) 1.2. Solve for x using the quadratic formula (4)

Ask by Curry Kelly. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1.1. The first term \( \frac{-b}{2a} \) represents the x-coordinate of the vertex (axis of symmetry) of the parabola. The second term \( \frac{\sqrt{b^{2}-4ac}}{2a} \) gives the distance from the axis of symmetry to each x-intercept. If the vertex lies on the x-axis, the discriminant \( b^{2}-4ac = 0 \). 1.2. To solve for x using the quadratic formula, set the equation \( ax^{2} + bx + c = 0 \), identify a, b, and c, compute the discriminant \( D = b^{2} - 4ac \), and substitute into the formula \( x = \frac{-b \pm \sqrt{D}}{2a} \). For example, solving \( x^{2} - 5x + 6 = 0 \) yields \( x = 3 \) and \( x = 2 \).

Solución

Below is one way to answer the question parts: ────────────────────────────── 1.1. In the quadratic formula   x = (–b ± √(b² – 4ac))⁄(2a) we can view it as the sum of two parts:  • The first term, –b⁄(2a), represents (i) the x‐coordinate of the vertex of the parabola. In other words, it is the line (axis) of symmetry for the parabola.  • The second term, √(b² – 4ac)⁄(2a), gives (ii) the distance (offset) from the axis of symmetry to each x‑intercept. That is, it tells you how far the intersection points lie from the vertex along the x‑axis.  • When the vertex lies exactly on the x‑axis, the parabola touches the x‑axis at a single point. Algebraically, this occurs when the distance term is zero, meaning √(b² – 4ac) = 0. This condition is (iii) the discriminant being equal to zero (i.e. b²–4ac = 0). ────────────────────────────── 1.2. Solving for x using the quadratic formula To solve a quadratic equation of the form   ax² + bx + c = 0 follow these steps: 1. Write the equation in standard form. 2. Identify the coefficients: a, b, and c. 3. Compute the discriminant: D = b² – 4ac. 4. Substitute into the quadratic formula:   x = (–b ± √D)⁄(2a) For example, consider the quadratic equation:   x² – 5x + 6 = 0 Here: a = 1, b = –5, and c = 6. Step-by-step solution:  a. Compute the discriminant:   D = (–5)² – 4(1)(6) = 25 – 24 = 1  b. Substitute into the quadratic formula:   x = [–(–5) ± √1]⁄(2×1) = (5 ± 1)⁄2  c. This gives two solutions:   x = (5 + 1)⁄2 = 6⁄2 = 3   and  x = (5 – 1)⁄2 = 4⁄2 = 2 Thus, the solutions are x = 3 and x = 2. ────────────────────────────── This completes the answer for both parts 1.1 and 1.2.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The quadratic formula is a powerful tool in algebra that not only helps find the roots of quadratic equations but also facilitates understanding the behavior of parabolas. The concept of the discriminant, \(b^{2}-4ac\), plays a crucial role in determining the nature of the roots: it signals whether they are real and distinct, real and identical, or complex. By exploring these relationships, students gain deeper insights into the dynamics of quadratic functions! In real-world applications, quadratic equations arise in fields like physics, engineering, and economics. For instance, the trajectory of a projectile can be modeled using a quadratic function! The maximum height and range of the projectile can be calculated using the roots derived from the quadratic formula. This means mastering the quadratic formula can actually prepare you for solving real-life problems — how cool is that?

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad