Pregunta
upstudy study bank question image url

- A triangular building is bounded by three streets. The building measures approximately 93 feet on the first street, 195 feet on the second street, and 180 feet on the third street. Approximate the ground area K covered by the building. \( \mathrm{K} \approx \square \) square feet (Round to two decimal places as needed.)

Ask by Cummings Clark. in the United States
Nov 07,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The approximate ground area \( K \) covered by the building is \( 8356.56 \) square feet.

Solución

To approximate the area \( K \) of a triangular building with sides measuring 93 feet, 195 feet, and 180 feet, we can use Heron's formula. Heron's formula states that the area of a triangle with sides \( a \), \( b \), and \( c \) is given by: \[ K = \sqrt{s(s-a)(s-b)(s-c)} \] where \( s \) is the semi-perimeter of the triangle, calculated as: \[ s = \frac{a + b + c}{2} \] In this case, let: - \( a = 93 \) feet - \( b = 195 \) feet - \( c = 180 \) feet First, we calculate the semi-perimeter \( s \): \[ s = \frac{93 + 195 + 180}{2} = \frac{468}{2} = 234 \text{ feet} \] Next, we can calculate the area \( K \) using Heron's formula: \[ K = \sqrt{s(s-a)(s-b)(s-c)} \] Calculating each term: \[ s - a = 234 - 93 = 141 \] \[ s - b = 234 - 195 = 39 \] \[ s - c = 234 - 180 = 54 \] Now substituting these values into the formula: \[ K = \sqrt{234 \times 141 \times 39 \times 54} \] Calculating the product inside the square root: \[ 234 \times 141 = 33054 \] \[ 39 \times 54 = 2106 \] \[ 33054 \times 2106 = 69604964 \] Now, taking the square root: \[ K = \sqrt{69604964} \approx 8356.56 \] Thus, the approximate ground area \( K \) covered by the building is: \[ \mathrm{K} \approx 8356.56 \text{ square feet} \] So, rounding to two decimal places, we have: \[ \mathrm{K} \approx 8356.56 \text{ square feet} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To approximate the ground area \( K \) of the triangular building, we can use Heron's formula. First, we find the semi-perimeter \( s \) of the triangle: \[ s = \frac{a + b + c}{2} = \frac{93 + 195 + 180}{2} = 234 \text{ feet} \] Next, applying Heron's formula \( K = \sqrt{s(s-a)(s-b)(s-c)} \): \[ K = \sqrt{234(234-93)(234-195)(234-180)} = \sqrt{234(141)(39)(54)} \] Calculating the terms: \[ K = \sqrt{234 \times 141 \times 39 \times 54} \approx \sqrt{53442132} \approx 7315.00 \text{ square feet} \] Thus, the approximate area \( K \) covered by the building is \( K \approx 7315.00 \) square feet. For fun, imagine a quirky triangular building that attracts curious onlookers. As visitors marvel at its unique shape, locals debate about the best coffee spot nearby, found right around the corner! It's a perfect blend of architecture and community charm. Speaking of communities, did you know that triangular buildings are often favored in urban planning? They can fit snugly into irregular lots, making efficient use of space while adding character to cityscapes. It’s a trend that resonates well with both architects and city dwellers alike!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad