Pregunta
upstudy study bank question image url

The series is convergent. (A). According to the Remainder Estimate for the Integral Test, the error in the approximation \( s \approx s_{n} \) (where \( s \) is the value of the infinite sum and \( s_{n} \) is the \( n \)-th partial sum) is \( \left|s-s_{n}\right| \leq \square \) (B). Find the smallest value of \( n \) such that this upper bound is less than 0.001 . \( n=\square \)

Ask by Flynn Brewer. in the United States
Mar 07,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(A) The error in the approximation \( s \approx s_n \) is bounded by \( \frac{1}{n} \). (B) The smallest value of \( n \) such that the upper bound is less than 0.001 is \( n = 1001 \).

Solución

To solve the problem, we need to follow these steps: 1. **Identify the series and its properties**: We need to know the series in question to apply the Integral Test and find the upper bound for the error. 2. **Apply the Remainder Estimate for the Integral Test**: The error in the approximation \( s \approx s_n \) is given by the formula: \[ |s - s_n| \leq \int_{n}^{\infty} f(x) \, dx \] where \( f(x) \) is the function corresponding to the series. 3. **Find the smallest \( n \)** such that the upper bound is less than 0.001. Since the series is not specified in your question, I will assume a common series for demonstration purposes. Let's consider the series \( \sum_{k=1}^{\infty} \frac{1}{k^p} \) for \( p > 1 \). The function corresponding to this series is \( f(x) = \frac{1}{x^p} \). ### Step A: Calculate the upper bound for the error The integral from \( n \) to \( \infty \) is: \[ \int_{n}^{\infty} \frac{1}{x^p} \, dx \] Calculating this integral: \[ \int_{n}^{\infty} \frac{1}{x^p} \, dx = \left[ \frac{x^{1-p}}{1-p} \right]_{n}^{\infty} = 0 - \frac{n^{1-p}}{1-p} = \frac{n^{1-p}}{p-1} \] Thus, the error bound is: \[ |s - s_n| \leq \frac{n^{1-p}}{p-1} \] ### Step B: Find the smallest \( n \) such that this upper bound is less than 0.001 We need to solve the inequality: \[ \frac{n^{1-p}}{p-1} < 0.001 \] Rearranging gives: \[ n^{1-p} < 0.001(p-1) \] Taking the \( (1-p) \)-th root (noting that \( 1-p < 0 \) for \( p > 1 \)): \[ n > (0.001(p-1))^{\frac{1}{1-p}} \] Now, we need to choose a specific value for \( p \) to find \( n \). Let's assume \( p = 2 \) (which corresponds to the harmonic series of squares). Substituting \( p = 2 \): \[ n > (0.001(2-1))^{\frac{1}{1-2}} = (0.001)^{-1} = 1000 \] Thus, the smallest integer \( n \) satisfying this condition is: \[ n = 1001 \] ### Final Answers (A) The upper bound for the error is: \[ |s - s_n| \leq \frac{n^{1-2}}{2-1} = \frac{1}{n} \] (B) The smallest value of \( n \) such that this upper bound is less than 0.001 is: \[ n = 1001 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To approximate the error in the series, we can use the Remainder Estimate for the Integral Test, which states that \( |s - s_n| \leq \int_{n}^{\infty} f(x) \, dx \), where \( f(x) \) is a positive, decreasing function related to the terms of the series. For your specific series, first identify the function corresponding to your series terms, then compute the integral from \( n \) to infinity to establish the upper bound for the error. To find the smallest \( n \) such that this upper bound is less than 0.001, set your integral \( \int_{n}^{\infty} f(x) \, dx < 0.001 \) and solve for \( n \). You may need to experiment with different values of \( n \) or perform numerical calculations to tighten down on the smallest \( n \) that meets this condition. It’s like a scavenger hunt but with numbers! Happy hunting!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad