Pregunta
upstudy study bank question image url

24. Find GCF \( (180,300) \).

Ask by Parsons Munoz. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The greatest common factor of 180 and 300 is 60.

Solución

To find the greatest common factor (GCF) of 180 and 300, we'll start by expressing each number as a product of its prime factors. Step 1: Prime Factorization • For 180:   180 = 2 × 90      = 2 × (2 × 45)      = 2² × 45      = 2² × (3 × 15)      = 2² × 3 × (3 × 5)      = 2² × 3² × 5 • For 300:   300 = 2 × 150      = 2 × (2 × 75)      = 2² × 75      = 2² × (3 × 25)      = 2² × 3 × (5 × 5)      = 2² × 3 × 5² Step 2: Determine the GCF The GCF is found by taking the product of the common prime factors with the smallest exponents. - For the prime 2: Both numbers have 2². - For the prime 3: 180 has 3² and 300 has 3¹, so we take 3¹. - For the prime 5: 180 has 5¹ and 300 has 5², so we take 5¹. Now, multiply these together:   GCF = 2² × 3¹ × 5¹ = 4 × 3 × 5 = 60 Thus, the greatest common factor of 180 and 300 is 60.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the GCF (Greatest Common Factor) of 180 and 300, we can use the prime factorization method. The prime factorization of 180 is \(2^2 \times 3^2 \times 5\), and for 300, it's \(2^2 \times 3 \times 5^2\). The GCF is found by taking the lowest power of each common prime factor. So, \(2^2\), \(3^1\), and \(5^1\) gives us \(2^2 \times 3^1 \times 5^1 = 4 \times 3 \times 5 = 60\). Therefore, the GCF of 180 and 300 is 60! If you're looking for a quick way to remember how to find the GCF, consider using the method of listing out the factors or employing the Euclidean algorithm. The Euclidean algorithm involves dividing the larger number by the smaller one and replacing the larger number with the remainder until you reach zero. The last non-zero remainder is the GCF. It's super efficient and handy, especially for larger numbers!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad